Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Oct 15;247(2):389–394. doi: 10.1042/bj2470389

Factors regulating the production of prostaglandin E2 and prostacyclin (prostaglandin I2) in rat and human adipocytes.

B Richelsen 1
PMCID: PMC1148421  PMID: 2827628

Abstract

The regulation of PGE2 (prostaglandin E2) and PGI2 (prostaglandin I2; prostacyclin) formation was investigated in isolated adipocytes. The formation of both PGs was stimulated by various lipolytic agents such as isoproterenol, adrenaline and dibutyryl cyclic AMP. During maximal stimulation the production of PGE2 and PGI2 (measured as 6-oxo-PGF1 alpha) was 0.51 +/- 0.04 and 1.21 +/- 0.09 ng/2 h per 10(6) cells respectively. Thus PGI2 was produced in excess of PGE2 in rat adipocytes. The production of the PGs was inhibited by indomethacin and acetylsalicylic acid in a concentration-dependent manner. The half-maximal effective concentration of indomethacin was 328 +/- 38 nM and that of acetylsalicylic acid was 38.5 +/- 5.3 microM. The PGs were maximally inhibited by 70-75% after incubation for 2 h. In contrast with their effect on PG production, the two agents had a small potentiating effect on the stimulated lipolysis (P less than 0.05). The phospholipase inhibitors mepacrine and chloroquine inhibited both PG production and triacylglycerol lipolysis and were therefore unable to indicate whether the PG precursor, arachidonic acid, originates from phospholipids or triacylglycerols in adipocytes. Angiotensin II significantly (P less than 0.05) stimulated both PGE2 and PGI2 production in rat adipocytes without affecting triacylglycerol lipolysis. Finally, it was shown that PGE2 and PGI2 were also produced in human adipocytes, although in smaller quantities than in rat adipocytes. It is concluded that the production of PGs in isolated adipocytes is regulated by various hormones. Moreover, at least two separate mechanisms for PG production may exist in adipocytes: (1) a mechanism that is activated concomitantly with triacylglycerol lipolysis (and cyclic AMP) and (2) an angiotensin II-sensitive, but lipolysis (and cyclic AMP)-independent mechanism.

Full text

PDF
389

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod L., Levine L. Prostacyclin production by isolated adipocytes. Diabetes. 1981 Feb;30(2):163–167. doi: 10.2337/diab.30.2.163. [DOI] [PubMed] [Google Scholar]
  2. Axelrod L., Minnich A. K., Ryan C. A. Stimulation of prostacyclin production in isolated rat adipocytes by angiotensin II, vasopressin, and bradykinin: evidence for two separate mechanisms of prostaglandin synthesis. Endocrinology. 1985 Jun;116(6):2548–2553. doi: 10.1210/endo-116-6-2548. [DOI] [PubMed] [Google Scholar]
  3. Axelrod L., Ryan C. A., Shaw J. L., Kieffer J. D., Ausiello D. A. Prostacyclin production by isolated rat adipocytes: evidence for cyclic adenosine 3',5'-monophosphate-dependent and independent mechanisms and for a selective effect of insulin. Endocrinology. 1986 Nov;119(5):2233–2239. doi: 10.1210/endo-119-5-2233. [DOI] [PubMed] [Google Scholar]
  4. Best L., Sener A., Mathias P. C., Malaisse W. J. Inhibition by mepacrine and p-bromophenacylbromide of phosphoinositide hydrolysis, glucose oxidation, calcium uptake and insulin release in rat pancreatic islets. Biochem Pharmacol. 1984 Aug 15;33(16):2657–2662. doi: 10.1016/0006-2952(84)90641-5. [DOI] [PubMed] [Google Scholar]
  5. Bowery B., Lewis G. P. Inhibition of functional vasodilatation and prostaglandin formation in rabbit adipose tissue by indomethacin and aspirin. Br J Pharmacol. 1973 Feb;47(2):305–314. doi: 10.1111/j.1476-5381.1973.tb08328.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crutchley D. J., Piper P. J. The behaviour of the pulmonary metabolites of prostaglandins in several simple thin-layer chromatography and bioassay systems. Prostaglandins. 1976 Jun;11(6):987–997. doi: 10.1016/0090-6980(76)90007-1. [DOI] [PubMed] [Google Scholar]
  7. Dalton C., Hope H. R. Inability of prostaglandin synthesis inhibitors to affect adipose tissue lipolysis. Prostaglandins. 1973 Nov;4(5):641–651. doi: 10.1016/s0090-6980(73)80046-2. [DOI] [PubMed] [Google Scholar]
  8. Dalton C., Hope W. C. Cyclic AMP regulation of prostaglandin biosynthesis in fat cells. Prostaglandins. 1974 May 10;6(3):227–242. doi: 10.1016/s0090-6980(74)80050-x. [DOI] [PubMed] [Google Scholar]
  9. Fain J. N., Psychoyos S., Czernik A. J., Frost S., Cash W. D. Indomethacin, lipolysis, and cyclic AMP accumulation in white fat cells. Endocrinology. 1973 Sep;93(3):632–639. doi: 10.1210/endo-93-3-632. [DOI] [PubMed] [Google Scholar]
  10. Flower R. J., Vane J. R. Inhibition of prostaglandin biosynthesis. Biochem Pharmacol. 1974 May 15;23(10):1439–1450. doi: 10.1016/0006-2952(74)90381-5. [DOI] [PubMed] [Google Scholar]
  11. Flower R. Steroidal antiinflammatory drugs as inhibitors of phospholipase A2. Adv Prostaglandin Thromboxane Res. 1978;3:105–112. [PubMed] [Google Scholar]
  12. Fredholm B. B., Hjemdahl P., Hammarström S. Stimulation and inhibition of cyclic AMP formation in isolated rat fat cell by prostacyclin (PGI2). Biochem Pharmacol. 1980 Feb 15;29(4):661–663. doi: 10.1016/0006-2952(80)90396-2. [DOI] [PubMed] [Google Scholar]
  13. Gallon L. S., Barcelli U. O. Measurement of prostaglandin E3 and other eicosanoids in biologic samples using high pressure liquid chromatography and radioimmunoassay. Prostaglandins. 1986 Feb;31(2):217–225. doi: 10.1016/0090-6980(86)90048-1. [DOI] [PubMed] [Google Scholar]
  14. Gold E. W., Edgar P. R. The effect of physiological levels of non-esterified fatty acids on the radioimmunoassay of prostaglandins. Prostaglandins. 1978 Dec;16(6):945–952. doi: 10.1016/0090-6980(78)90110-7. [DOI] [PubMed] [Google Scholar]
  15. Gréen K., Hamberg M., Samuelsson B., Frölich J. C. Extraction and chromatographic procedures for purification of prostaglandins, thromboxanes, prostacyclin, and their metabolites. Adv Prostaglandin Thromboxane Res. 1978;5:15–38. [PubMed] [Google Scholar]
  16. Hofmann S. L., Prescott S. M., Majerus P. W. The effects of mepacrine and p-bromophenacyl bromide on arachidonic acid release in human platelets. Arch Biochem Biophys. 1982 Apr 15;215(1):237–244. doi: 10.1016/0003-9861(82)90300-9. [DOI] [PubMed] [Google Scholar]
  17. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lewis G. P., Mattews J. The mechanism of functional vasodilatation in rabbit epigastric adipose tissue. J Physiol. 1970 Mar;207(1):15–30. doi: 10.1113/jphysiol.1970.sp009045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matsuda K., Ohnishi K., Misaka E., Yamazaki M. Decrease of urinary prostaglandin E2 and prostaglandin F2 alpha excretion by nonsteroidal anti-inflammatory drugs in rats. Relationship to anti-inflammatory activity. Biochem Pharmacol. 1983 Apr 15;32(8):1347–1352. doi: 10.1016/0006-2952(83)90445-8. [DOI] [PubMed] [Google Scholar]
  20. Metz S. A., Rice M. G., Robertson R. P. Applications and limitations of measurement of 15-keto,13,14-dihydro prostaglandin E2 in human blood by radioimmunoassay. Prostaglandins. 1979 Jun;17(6):839–861. doi: 10.1016/0090-6980(79)90057-1. [DOI] [PubMed] [Google Scholar]
  21. Négrel R., Ailhaud G. Metabolism of arachidonic acid and prostaglandin synthesis in the preadipocyte clonal line ob17. Biochem Biophys Res Commun. 1981 Feb 12;98(3):768–777. doi: 10.1016/0006-291x(81)91178-5. [DOI] [PubMed] [Google Scholar]
  22. Ramwell P. W., Leovey E. M., Sintetos A. L. Regulation of the arachidonic acid cascade. Biol Reprod. 1977 Feb;16(1):70–87. doi: 10.1095/biolreprod16.1.70. [DOI] [PubMed] [Google Scholar]
  23. Richelsen B., Eriksen E. F., Beck-Nielsen H., Pedersen O. Prostaglandin E2 receptor binding and action in human fat cells. J Clin Endocrinol Metab. 1984 Jul;59(1):7–12. doi: 10.1210/jcem-59-1-7. [DOI] [PubMed] [Google Scholar]
  24. Richelsen B., Pedersen O. Beta-adrenergic regulation of prostaglandin E2 receptors in human and rat adipocytes. Endocrinology. 1985 Mar;116(3):1182–1188. doi: 10.1210/endo-116-3-1182. [DOI] [PubMed] [Google Scholar]
  25. Richelsen B., Pedersen O., Sørensen N. S. Reduced binding and antilipolytic effect of prostaglandin E2 in adipocytes from patients with hyperthyroidism. J Clin Endocrinol Metab. 1986 Feb;62(2):258–262. doi: 10.1210/jcem-62-2-258. [DOI] [PubMed] [Google Scholar]
  26. Samuelsson B., Goldyne M., Granström E., Hamberg M., Hammarström S., Malmsten C. Prostaglandins and thromboxanes. Annu Rev Biochem. 1978;47:997–1029. doi: 10.1146/annurev.bi.47.070178.005025. [DOI] [PubMed] [Google Scholar]
  27. Shaw J. E., Ramwell P. W. Release of prostaglandin from rat epididymal fat pad on nervous and hormonal stimulation. J Biol Chem. 1968 Apr 10;243(7):1498–1503. [PubMed] [Google Scholar]
  28. Vargaftig B. B. Carrageenan and thrombin trigger prostaglandin synthetase-independent aggregation of rabbit platelets: inhibition by phospholipase A2 inhibitors. J Pharm Pharmacol. 1977 Apr;29(4):222–228. doi: 10.1111/j.2042-7158.1977.tb11293.x. [DOI] [PubMed] [Google Scholar]
  29. Wuthrich R. P., Vallotton M. B. Factors regulating prostaglandin E2 biosynthesis in renal cortical tubular cells. Biochem Pharmacol. 1986 Jul 15;35(14):2297–2300. doi: 10.1016/0006-2952(86)90454-5. [DOI] [PubMed] [Google Scholar]
  30. de Cingolani G. E., van den Bosch H., van Deenen L. L. Phospholipase A and lysophospholipase activities in isolated fat cells: effect of cyclic 3',5'-AMP. Biochim Biophys Acta. 1972 Mar 23;260(3):387–392. doi: 10.1016/0005-2760(72)90053-7. [DOI] [PubMed] [Google Scholar]
  31. van den Bosch H. Intracellular phospholipases A. Biochim Biophys Acta. 1980 Sep 30;604(2):191–246. doi: 10.1016/0005-2736(80)90574-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES