Abstract
Zinc cytochrome c forms tight 1:1 complexes with a variety of derivatives of cytochrome c oxidase. On complex-formation the fluorescence of zinc cytochrome c is diminished. Titrations of zinc cytochrome c with cytochrome c oxidase, followed through the fluorescence emission of the former, have yielded both binding constants (K approximately 7 x 10(6) M-1 for the fully oxidized and 2 x 10(7) M-1 for the fully reduced enzyme) and distance information. Comparison of steady-state measurements obtained by absorbance and fluorescence spectroscopy in the presence and in the absence of cyanide show that it is the reduction of cytochrome a and/or CuA that triggers a conformational change: this increases the zinc cytochrome c to acceptor (most probably cytochrome a itself) distance by some 0.5 nm. Ligand binding to the fully oxidized or fully reduced enzyme leaves the extent of fluorescence quenching unchanged, whereas binding of cyanide to the half-reduced enzyme (a2+CuA+CuB2+-CN(-)-a3(3+)) enhances fluorescence emission relative to that for the fully reduced enzyme, implying further relative movement of donor and acceptor.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azzi A. Cytochrome c oxidase. Towards a clarification of its structure, interactions and mechanism. Biochim Biophys Acta. 1980 Dec;594(4):231–252. doi: 10.1016/0304-4173(80)90002-6. [DOI] [PubMed] [Google Scholar]
- Blair D. F., Ellis W. R., Jr, Wang H., Gray H. B., Chan S. I. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions. J Biol Chem. 1986 Sep 5;261(25):11524–11537. [PubMed] [Google Scholar]
- Blair D. F., Gelles J., Chan S. I. Redox-linked proton translocation in cytochrome oxidase: the importance of gating electron flow. The effects of slip in a model transducer. Biophys J. 1986 Oct;50(4):713–733. doi: 10.1016/S0006-3495(86)83511-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brzezinski P., Malmström B. G. Electron-transport-driven proton pumps display nonhyperbolic kinetics: Simulation of the steady-state kinetics of cytochrome c oxidase. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4282–4286. doi: 10.1073/pnas.83.12.4282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casey R. P., Thelen M., Azzi A. Dicyclohexylcarbodiimide binds specifically and covalently to cytochrome c oxidase while inhibiting its H+-translocating activity. J Biol Chem. 1980 May 10;255(9):3994–4000. [PubMed] [Google Scholar]
- Dale R. E., Eisinger J., Blumberg W. E. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J. 1979 May;26(2):161–193. doi: 10.1016/S0006-3495(79)85243-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dale R. E., Eisinger J. Intramolecular energy transfer and molecular conformation. Proc Natl Acad Sci U S A. 1976 Feb;73(2):271–273. doi: 10.1073/pnas.73.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickinson L. C., Chien J. C. Cobalt-cytochrome c. I. Preparation, properties, and enzymic activity. Biochemistry. 1975 Aug 12;14(16):3526–3534. doi: 10.1021/bi00687a003. [DOI] [PubMed] [Google Scholar]
- Dockter M. E., Steinemann A., Schatz G. Mapping of yeast cytochrome c oxidase by fluorescence resonance energy transfer. Distances between subunit II, heme a, and cytochrome c bound to subunit III. J Biol Chem. 1978 Jan 10;253(1):311–317. [PubMed] [Google Scholar]
- Eisinger J., Dale R. E. Letter: interpretation of intramolecular energy transfer experiments. J Mol Biol. 1974 Apr 25;84(4):643–647. doi: 10.1016/0022-2836(74)90122-3. [DOI] [PubMed] [Google Scholar]
- Geren L. M., Millett F. Fluorescence energy transfer studies of the interaction between adrenodoxin and cytochrome c. J Biol Chem. 1981 Oct 25;256(20):10485–10489. [PubMed] [Google Scholar]
- Jensen P., Wilson M. T., Aasa R., Malmström B. G. Cyanide inhibition of cytochrome c oxidase. A rapid-freeze e.p.r. investigation. Biochem J. 1984 Dec 15;224(3):829–837. doi: 10.1042/bj2240829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones M. G., Bickar D., Wilson M. T., Brunori M., Colosimo A., Sarti P. A re-examination of the reactions of cyanide with cytochrome c oxidase. Biochem J. 1984 May 15;220(1):57–66. doi: 10.1042/bj2200057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King T. E., Bayley P. M., Yong F. C. Optical rotatory dispersion and circular dichroism of cytochrome oxidase. Eur J Biochem. 1971 May 11;20(1):103–110. doi: 10.1111/j.1432-1033.1971.tb01367.x. [DOI] [PubMed] [Google Scholar]
- Kornblatt J. A., Luu H. A. The interactions of cytochrome c and porphyrin cytochrome c with cytochrome c oxidase. The resting, reduced and pulsed enzymes. Eur J Biochem. 1986 Sep 1;159(2):407–413. doi: 10.1111/j.1432-1033.1986.tb09883.x. [DOI] [PubMed] [Google Scholar]
- Miki M., Iio T. Fluorescence energy transfer measurements between the nucleotide binding site and Cys-373 in actin and their application to the kinetics of actin polymerization. Biochim Biophys Acta. 1984 Nov 9;790(3):201–207. doi: 10.1016/0167-4838(84)90023-2. [DOI] [PubMed] [Google Scholar]
- Sarti P., Jones M. G., Antonini G., Malatesta F., Colosimo A., Wilson M. T., Brunori M. Kinetics of redox-linked proton pumping activity of native and subunit III-depleted cytochrome c oxidase: a stopped-flow investigation. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4876–4880. doi: 10.1073/pnas.82.15.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solioz M., Carafoli E., Ludwig B. The cytochrome c oxidase of Paracoccus denitrificans pumps protons in a reconstituted system. J Biol Chem. 1982 Feb 25;257(4):1579–1582. [PubMed] [Google Scholar]
- Thomson A. J., Greenwood C., Gadsby P. M., Peterson J., Eglinton D. G., Hill B. C., Nicholls P. The structure of the cytochrome a3-CuB site of mammalian cytochrome c oxidase as probed by MCD and EPR spectroscopy. J Inorg Biochem. 1985 Mar-Apr;23(3-4):187–197. doi: 10.1016/0162-0134(85)85025-x. [DOI] [PubMed] [Google Scholar]
- Vanderkooi J. M., Adar F., Erecińska M. Metallocytochromes c: characterization of electronic absorption and emission spectra of Sn4+ and Zn2+ cytochromes c. Eur J Biochem. 1976 May 1;64(2):381–387. doi: 10.1111/j.1432-1033.1976.tb10312.x. [DOI] [PubMed] [Google Scholar]
- Vanderkooi J. M., Erecińska M. Cytochrome c interaction with membranes. Absorption and emission spectra and binding characteristics of iron-free cytochrome c. Eur J Biochem. 1975 Dec 1;60(1):199–207. doi: 10.1111/j.1432-1033.1975.tb20992.x. [DOI] [PubMed] [Google Scholar]
- Vanderkooi J. M., Landesberg R., Hayden G. W., Owen C. S. Metal-free and metal-substituted cytochromes c. Use in characterization of the cytochrome c binding site. Eur J Biochem. 1977 Dec 1;81(2):339–347. doi: 10.1111/j.1432-1033.1977.tb11957.x. [DOI] [PubMed] [Google Scholar]
- Wikström K. F., Harmon H. J., Ingledew W. J., Chance B. A re-evaluation of the spectral, potentiometric and energy-linked properties of cytochrome c oxidase in mitochondria. FEBS Lett. 1976 Jun 15;65(3):259–277. doi: 10.1016/0014-5793(76)80127-5. [DOI] [PubMed] [Google Scholar]
- YONETANI T. Studies on cytochrome oxidase. I. Absolute and difference absorption spectra. J Biol Chem. 1960 Mar;235:845–852. [PubMed] [Google Scholar]
- YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]
- van Buuren K. J., Zuurendonk P. F., van Gelder B. F., Muijsers A. O. Biochemical and biophysical studies on cytochrome aa 3 . V. Binding of cyanide to cytochrome aa 3 . Biochim Biophys Acta. 1972 Feb 28;256(2):243–257. doi: 10.1016/0005-2728(72)90056-4. [DOI] [PubMed] [Google Scholar]
