Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Nov 1;247(3):701–706. doi: 10.1042/bj2470701

Proto-oncogene expression in proliferating and differentiating cardiac and skeletal muscle.

W C Claycomb 1, N A Lanson Jr 1
PMCID: PMC1148469  PMID: 2447874

Abstract

We have examined the expression of 13 proto-oncogenes in proliferating and terminally differentiated cardiac and skeletal muscle. Total RNA was prepared from intact ventricular cardiac-muscle tissue and from purified ventricular cardiac-muscle cells of neonatal and adult rats and from cultured proliferating and terminally differentiated L6A1 rat skeletal-muscle cells. cDNA probes for histone H4, thymidine kinase, myosin heavy chain and M-creatine kinase were used to assess cellular proliferation and differentiation. Oncogenes c-myc, c-raf, c-erb-A, c-ras-H, c-ski, and c-sis were expressed in both proliferating and differentiated cardiac muscle tissue and cells, whereas c-myb expression was not observed in either. c-src was expressed only in neonatal cardiac muscle tissue and cells. c-fms, c-abl, and c-ras-K were expressed in tissue from both neonatal and adult animals but only in purified cells from neonatal animals. c-fes/fps was expressed only in neonatal cardiac muscles cells. c-fos expression was not observed in cardiac-muscle tissue from either neonatal or adult rats, but surprisingly was abundantly expressed in freshly isolated cardiac-muscle cells from animals of both ages. These results emphasize that biochemical analysis using intact cardiac-muscle tissue may not necessarily reflect muscle-specific cell processes. They also show that the expression of c-fos can be activated by the cell isolation procedure. c-myc, c-ski, c-ras-H, c-ras-K, c-abl, c-raf and c-erb-A were expressed in both proliferating and terminally differentiated skeletal-muscle cells, whereas c-myb, c-fos, c-src and c-fms transcripts were observed only in proliferating cells. c-fes/fps and c-sis were not expressed in dividing or fused skeletal-muscle cells. These results demonstrate unique tissue and cell-specific patterns of proto-oncogene expression and suggest that these genes may be involved with the regulation of cellular proliferation and terminal differentiation in striated muscle.

Full text

PDF
701

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amasino R. M. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem. 1986 Feb 1;152(2):304–307. doi: 10.1016/0003-2697(86)90413-6. [DOI] [PubMed] [Google Scholar]
  2. Bishop J. M. Cellular oncogenes and retroviruses. Annu Rev Biochem. 1983;52:301–354. doi: 10.1146/annurev.bi.52.070183.001505. [DOI] [PubMed] [Google Scholar]
  3. Bishop J. M., Drees B., Katzen A. L., Kornberg T. B., Simon M. A. Proto-oncogenes of Drosophila melanogaster. Cold Spring Harb Symp Quant Biol. 1985;50:727–731. doi: 10.1101/sqb.1985.050.01.090. [DOI] [PubMed] [Google Scholar]
  4. Bishop J. M. Viral oncogenes. Cell. 1985 Aug;42(1):23–38. doi: 10.1016/s0092-8674(85)80098-2. [DOI] [PubMed] [Google Scholar]
  5. Bradshaw H. D., Jr Molecular cloning and cell cycle-specific regulation of a functional human thymidine kinase gene. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5588–5591. doi: 10.1073/pnas.80.18.5588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Claycomb W. C. Biochemical aspects of cardiac muscle differentiation. Deoxyribonucleic acid synthesis and nuclear and cytoplasmic deoxyribonucleic acid polymerase activity. J Biol Chem. 1975 May 10;250(9):3229–3235. [PubMed] [Google Scholar]
  9. Claycomb W. C. Biochemical aspects of cardiac muscle differentiation. Possible control of deoxyribonucleic acid synthesis and cell differentiation by adrenergic innervation and cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1976 Oct 10;251(19):6082–6089. [PubMed] [Google Scholar]
  10. Claycomb W. C., Bradshaw H. D., Jr Acquisition of multiple nuclei and the activity of DNA polymerase alpha and reinitiation of DNA replication in terminally differentiated adult cardiac muscle cells in culture. Dev Biol. 1983 Oct;99(2):331–337. doi: 10.1016/0012-1606(83)90283-x. [DOI] [PubMed] [Google Scholar]
  11. Claycomb W. C. Cardiac muscle cell proliferation and cell differentiation in vivo and in vitro. Adv Exp Med Biol. 1983;161:249–265. doi: 10.1007/978-1-4684-4472-8_14. [DOI] [PubMed] [Google Scholar]
  12. Claycomb W. C. Culture of cardiac muscle cells in serum-free media. Exp Cell Res. 1981 Jan;131(1):231–236. doi: 10.1016/0014-4827(81)90423-7. [DOI] [PubMed] [Google Scholar]
  13. Claycomb W. C. DNA synthesis and DNA enzymes in terminally differentiating cardiac muscle cells. Exp Cell Res. 1979 Jan;118(1):111–114. doi: 10.1016/0014-4827(79)90588-3. [DOI] [PubMed] [Google Scholar]
  14. Claycomb W. C., Lanson N., Jr Isolation and culture of the terminally differentiated adult mammalian ventricular cardiac muscle cell. In Vitro. 1984 Aug;20(8):647–651. doi: 10.1007/BF02619615. [DOI] [PubMed] [Google Scholar]
  15. Claycomb W. C., Moses R. L. Culture of atrial and ventricular cardiac muscle cells from the adult squirrel monkey Saimiri sciureus. Exp Cell Res. 1985 Nov;161(1):95–100. doi: 10.1016/0014-4827(85)90493-8. [DOI] [PubMed] [Google Scholar]
  16. Claycomb W. C., Palazzo M. C. Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study. Dev Biol. 1980 Dec;80(2):466–482. doi: 10.1016/0012-1606(80)90419-4. [DOI] [PubMed] [Google Scholar]
  17. Endo T., Nadal-Ginard B. Transcriptional and posttranscriptional control of c-myc during myogenesis: its mRNA remains inducible in differentiated cells and does not suppress the differentiated phenotype. Mol Cell Biol. 1986 May;6(5):1412–1421. doi: 10.1128/mcb.6.5.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ewton D. Z., Erwin B. G., Pegg A. E., Florini J. R. The role of polyamines in somatomedin-stimulated differentiation of L6 myoblasts. J Cell Physiol. 1984 Sep;120(3):263–270. doi: 10.1002/jcp.1041200302. [DOI] [PubMed] [Google Scholar]
  19. Geyer P. K., Meyuhas O., Perry R. P., Johnson L. F. Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Mol Cell Biol. 1982 Jun;2(6):685–693. doi: 10.1128/mcb.2.6.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jacobs F. A., Bird R. C., Sells B. H. Differentiation of rat myoblasts. Regulation of turnover of ribosomal proteins and their mRNAs. Eur J Biochem. 1985 Jul 15;150(2):255–263. doi: 10.1111/j.1432-1033.1985.tb09015.x. [DOI] [PubMed] [Google Scholar]
  21. Krauter K. S., Soeiro R., Nadal-Ginard B. Transcriptional regulation of ribosomal RNA accumulation during L6E9 myoblast differentiation. J Mol Biol. 1979 Nov 15;134(4):727–741. doi: 10.1016/0022-2836(79)90482-0. [DOI] [PubMed] [Google Scholar]
  22. Leibovitch S. A., Leibovitch M. P., Guillier M., Hillion J., Harel J. Differential expression of protooncogenes related to transformation and cancer progression in rat myoblasts. Cancer Res. 1986 Aug;46(8):4097–4103. [PubMed] [Google Scholar]
  23. Meyuhas O., Perry R. P. Construction and identification of cDNA clones for mouse ribosomal proteins: application for the study of r-protein gene expression. Gene. 1980 Jul;10(2):113–129. doi: 10.1016/0378-1119(80)90129-8. [DOI] [PubMed] [Google Scholar]
  24. Morkin E., Ashford T. P. Myocardial DNA synthesis in experimental cardiac hypertrophy. Am J Physiol. 1968 Dec;215(6):1409–1413. doi: 10.1152/ajplegacy.1968.215.6.1409. [DOI] [PubMed] [Google Scholar]
  25. Polinger I. S. Separation of cell types in embryonic heart cell cultures. Exp Cell Res. 1970 Nov;63(1):78–82. doi: 10.1016/0014-4827(70)90333-2. [DOI] [PubMed] [Google Scholar]
  26. Rumyantsev P. P. Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. Int Rev Cytol. 1977;51:186–273. [PubMed] [Google Scholar]
  27. Sasaki R., Watanabe Y., Morishita T., Yamagata S. Estimation of the cell number of heart muscles in normal rats. Tohoku J Exp Med. 1968 Jun;95(2):177–184. doi: 10.1620/tjem.95.177. [DOI] [PubMed] [Google Scholar]
  28. Schneider M. D., Payne P. A., Ueno H., Perryman M. B., Roberts R. Dissociated expression of c-myc and a fos-related competence gene during cardiac myogenesis. Mol Cell Biol. 1986 Nov;6(11):4140–4143. doi: 10.1128/mcb.6.11.4140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sejersen T., Sümegi J., Ringertz N. R. Density-dependent arrest of DNA replication is accompanied by decreased levels of c-myc mRNA in myogenic but not in differentiation-defective myoblasts. J Cell Physiol. 1985 Dec;125(3):465–470. doi: 10.1002/jcp.1041250315. [DOI] [PubMed] [Google Scholar]
  30. Starksen N. F., Simpson P. C., Bishopric N., Coughlin S. R., Lee W. M., Escobedo J. A., Williams L. T. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8348–8350. doi: 10.1073/pnas.83.21.8348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Varmus H. E. The molecular genetics of cellular oncogenes. Annu Rev Genet. 1984;18:553–612. doi: 10.1146/annurev.ge.18.120184.003005. [DOI] [PubMed] [Google Scholar]
  33. Weinberg R. A. The action of oncogenes in the cytoplasm and nucleus. Science. 1985 Nov 15;230(4727):770–776. doi: 10.1126/science.2997917. [DOI] [PubMed] [Google Scholar]
  34. Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES