Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Nov 1;247(3):801–804. doi: 10.1042/bj2470801

Continued glucose output after re-feeding contributes to glucose intolerance in hyperthyroidism.

M J Holness 1, M C Sugden 1
PMCID: PMC1148484  PMID: 3426565

Abstract

The effects of hyperthyroidism to elicit glucose intolerance after glucose administration were decreased under conditions where hepatic glucose output was suppressed. It is concluded that continued hepatic glucose output contributes to abnormal glucose tolerance in hyperthyroidism.

Full text

PDF
801

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackshear P. J., Holloway P. A., Alberti K. G. The metabolic effects of sodium dichloroacetate in the starved rat. Biochem J. 1974 Aug;142(2):279–286. doi: 10.1042/bj1420279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Böttger I., Kriegel H., Wieland O. Fluctuation of hepatic enzymes important in glucose metabolism in relation to thyroid function. Eur J Biochem. 1970 Apr;13(2):253–257. doi: 10.1111/j.1432-1033.1970.tb00925.x. [DOI] [PubMed] [Google Scholar]
  3. Clark D. G., Brinkman M., Neville S. D., Haynes W. D. Effects in vivo of food deprivation and 3-mercaptopicolinate in the glycogen-storage-disease (gsd/gsd) rat. Biochem J. 1985 Nov 1;231(3):755–759. doi: 10.1042/bj2310755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DiTullio N. W., Berkoff C. E., Blank B., Kostos V., Stack E. J., Saunders H. L. 3-mercaptopicolinic acid, an inhibitor of gluconeogenesis. Biochem J. 1974 Mar;138(3):387–394. doi: 10.1042/bj1380387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holness M. J., Palmer T. N., Sugden M. C. Effects of administration of tri-iodothyronine on the response of cardiac and renal pyruvate dehydrogenase complex to starvation for 48 h. Biochem J. 1985 Nov 15;232(1):255–259. doi: 10.1042/bj2320255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holness M. J., Sugden M. C. Hepatic carbon flux after re-feeding. Hyperthyroidism blocks glycogen synthesis and the suppression of glucose output observed in response to carbohydrate re-feeding. Biochem J. 1987 Nov 1;247(3):627–634. doi: 10.1042/bj2470627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hopkirk T. J., Bloxham D. Fatty acid synthesis and metabolite fluctuations in meal-fed rats [proceedings]. Biochem Soc Trans. 1977;5(5):1294–1297. doi: 10.1042/bst0051294. [DOI] [PubMed] [Google Scholar]
  8. Katz J., McGarry J. D. The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest. 1984 Dec;74(6):1901–1909. doi: 10.1172/JCI111610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kreines K., Jett M., Knowles H. C., Jr Observations in hyperthyroidism of abnormal glucose tolerance and other traits related to diabetes mellitus. Diabetes. 1965 Nov;14(11):740–744. doi: 10.2337/diab.14.11.740. [DOI] [PubMed] [Google Scholar]
  10. Kuwajima M., Newgard C. B., Foster D. W., McGarry J. D. Time course and significance of changes in hepatic fructose-2,6-bisphosphate levels during refeeding of fasted rats. J Clin Invest. 1984 Sep;74(3):1108–1111. doi: 10.1172/JCI111479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Malthus R., Clark D. G., Watts C., Sneyd J. G. Glycogen-storage disease in rats, a genetically determined deficiency of liver phosphorylase kinase. Biochem J. 1980 Apr 15;188(1):99–106. doi: 10.1042/bj1880099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Newgard C. B., Foster D. W., McGarry J. D. Evidence for suppression of hepatic glucose-6-phosphatase with carbohydrate feeding. Diabetes. 1984 Feb;33(2):192–195. doi: 10.2337/diab.33.2.192. [DOI] [PubMed] [Google Scholar]
  13. Okajima F., Ui M. Metabolism of glucose in hyper- and hypo-thyroid rats in vivo. Glucose-turnover values and futile-cycle activities obtained with 14C- and 3H-labelled glucose. Biochem J. 1979 Aug 15;182(2):565–575. doi: 10.1042/bj1820565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scofield R. F., Kosugi K., Schumann W. C., Kumaran K., Landau B. R. Quantitative estimation of the pathways followed in the conversion to glycogen of glucose administered to the fasted rat. J Biol Chem. 1985 Jul 25;260(15):8777–8782. [PubMed] [Google Scholar]
  15. Shikama H., Ui M. Glucose load diverts hepatic gluconeogenic product from glucose to glycogen in vivo. Am J Physiol. 1978 Oct;235(4):E354–E360. doi: 10.1152/ajpendo.1978.235.4.E354. [DOI] [PubMed] [Google Scholar]
  16. Sugden M. C., Watts D. I., Marshall C. E. Regulation of hepatic lipogenesis in starved and diabetic animals by thyroid hormone. Biosci Rep. 1981 Oct;1(10):757–764. doi: 10.1007/BF01114797. [DOI] [PubMed] [Google Scholar]
  17. Sugden M. C., Watts D. I., Palmer T. N., Myles D. D. Direction of carbon flux in starvation and after refeeding: in vitro and in vivo effects of 3-mercaptopicolinate. Biochem Int. 1983 Sep;7(3):329–337. [PubMed] [Google Scholar]
  18. Watts C., Malthus R. S. Liver glycogen synthase in rats with a glycogen-storage disorder. The role of glycogen in the regulation of glycogen synthase. Eur J Biochem. 1980;108(1):73–77. doi: 10.1111/j.1432-1033.1980.tb04697.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES