Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Nov 15;248(1):43–51. doi: 10.1042/bj2480043

Lysyl-tRNA synthetase from Escherichia coli K12. Chromatographic heterogeneity and the lysU-gene product.

J Charlier 1, R Sanchez 1
PMCID: PMC1148498  PMID: 3325036

Abstract

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5')tetraphospho(5')adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.

Full text

PDF
43

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews J. C., Blevins T. C., Short S. A. Regulation of peptide transport in Escherichia coli: induction of the trp-linked operon encoding the oligopeptide permease. J Bacteriol. 1986 Feb;165(2):428–433. doi: 10.1128/jb.165.2.428-433.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker J. C., Jacobson M. K. Alteration of adenyl dinucleotide metabolism by environmental stress. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2350–2352. doi: 10.1073/pnas.83.8.2350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blanquet S., Plateau P., Brevet A. The role of zinc in 5',5'-diadenosine tetraphosphate production by aminoacyl-transfer RNA synthetases. Mol Cell Biochem. 1983;52(1):3–11. doi: 10.1007/BF00230583. [DOI] [PubMed] [Google Scholar]
  4. Bochner B. R., Ames B. N. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem. 1982 Aug 25;257(16):9759–9769. [PubMed] [Google Scholar]
  5. Bochner B. R., Lee P. C., Wilson S. W., Cutler C. W., Ames B. N. AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell. 1984 May;37(1):225–232. doi: 10.1016/0092-8674(84)90318-0. [DOI] [PubMed] [Google Scholar]
  6. Bochner B. R., Zylicz M., Georgopoulos C. Escherichia coli DnaK protein possesses a 5'-nucleotidase activity that is inhibited by AppppA. J Bacteriol. 1986 Nov;168(2):931–935. doi: 10.1128/jb.168.2.931-935.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burdon R. H. Heat shock and the heat shock proteins. Biochem J. 1986 Dec 1;240(2):313–324. doi: 10.1042/bj2400313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charlier J., Gerlo E. Arginyl-tRNA synthetase from Escherichia coli K12. Purification, properties, and sequence of substrate addition. Biochemistry. 1979 Jul 10;18(14):3171–3178. doi: 10.1021/bi00581a040. [DOI] [PubMed] [Google Scholar]
  9. Charlier J., Gerlo E. Arginyl-tRNA synthetase from Escherichia coli. Influence of arginine biosynthetic precursors on the charging of arginine-acceptor tRNA with [14C]arginine. Eur J Biochem. 1976 Nov 1;70(1):137–145. doi: 10.1111/j.1432-1033.1976.tb10964.x. [DOI] [PubMed] [Google Scholar]
  10. Cowing D. W., Bardwell J. C., Craig E. A., Woolford C., Hendrix R. W., Gross C. A. Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci U S A. 1985 May;82(9):2679–2683. doi: 10.1073/pnas.82.9.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ehresmann B., Imbault P., Weil J. H. Spectrophotometric determination of protein concentration in cell extracts containing tRNA's and rRNA's. Anal Biochem. 1973 Aug;54(2):454–463. doi: 10.1016/0003-2697(73)90374-6. [DOI] [PubMed] [Google Scholar]
  12. Goerlich O., Foeckler R., Holler E. Mechanism of synthesis of adenosine(5')tetraphospho(5')adenosine (AppppA) by aminoacyl-tRNA synthetases. Eur J Biochem. 1982 Aug;126(1):135–142. doi: 10.1111/j.1432-1033.1982.tb06757.x. [DOI] [PubMed] [Google Scholar]
  13. Goerlich O., Holler E. Phenylalanyl-tRNA synthetase of Escherichia coli K10. Effects of zinc(II) on partial reactions of diadenosine 5',5"'-P1,P4-tetraphosphate synthesis, conformation, and protein aggregation. Biochemistry. 1984 Jan 17;23(2):182–190. doi: 10.1021/bi00297a002. [DOI] [PubMed] [Google Scholar]
  14. Grossman A. D., Erickson J. W., Gross C. A. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell. 1984 Sep;38(2):383–390. doi: 10.1016/0092-8674(84)90493-8. [DOI] [PubMed] [Google Scholar]
  15. Grossman A. D., Straus D. B., Walter W. A., Gross C. A. Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev. 1987 Apr;1(2):179–184. doi: 10.1101/gad.1.2.179. [DOI] [PubMed] [Google Scholar]
  16. Grossman A. D., Taylor W. E., Burton Z. F., Burgess R. R., Gross C. A. Stringent response in Escherichia coli induces expression of heat shock proteins. J Mol Biol. 1985 Nov 20;186(2):357–365. doi: 10.1016/0022-2836(85)90110-x. [DOI] [PubMed] [Google Scholar]
  17. Grummt F., Waltl G., Jantzen H. M., Hamprecht K., Huebscher U., Kuenzle C. C. Diadenosine 5',5'''-P1,P4-tetraphosphate, a ligand of the 57-kilodalton subunit of DNA polymerase alpha. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6081–6085. doi: 10.1073/pnas.76.12.6081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Guranowski A., Jakubowski H., Holler E. Catabolism of diadenosine 5',5"'-P1,P4-tetraphosphate in procaryotes. Purification and properties of diadenosine 5',5"'-P1,P4-tetraphosphate (symmetrical) pyrophosphohydrolase from Escherichia coli K12. J Biol Chem. 1983 Dec 25;258(24):14784–14789. [PubMed] [Google Scholar]
  19. Harnett S. P., Lowe G., Tansley G. Mechanism of activation of phenylalanine and synthesis of P1, P4-bis(5'-adenosyl) tetraphosphate by yeast phenylalanyl-tRNA synthetase. Biochemistry. 1985 Jun 4;24(12):2908–2915. doi: 10.1021/bi00333a014. [DOI] [PubMed] [Google Scholar]
  20. Hirshfield I. N., Bloch P. L., Van Bogelen R. A., Neidhardt F. C. Multiple forms of lysyl-transfer ribonucleic acid synthetase in Escherichia coli. J Bacteriol. 1981 Apr;146(1):345–351. doi: 10.1128/jb.146.1.345-351.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hirshfield I. N., Yeh F. M. An in vivo effect of the metabolites L-alanine and glycyl-L-leucine on the properties of the lysyl-tRNA synthetase from Escherichia coli K-12. II. Kinetic evidence. Biochim Biophys Acta. 1976 Jul 2;435(3):306–314. doi: 10.1016/0005-2787(76)90111-8. [DOI] [PubMed] [Google Scholar]
  22. Hirshfield I. N., Yeh F. M., Zamecnik P. C. An in vivo effect of the metabolites L-alanine and glycyl-L-leucine on the properties of lysyl-tRNA synthetase from Escherichia coli K-12. I. Influence on subunit composition and molecular weight distribution. Biochim Biophys Acta. 1976 Jul 2;435(3):290–305. doi: 10.1016/0005-2787(76)90110-6. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lee P. C., Bochner B. R., Ames B. N. AppppA, heat-shock stress, and cell oxidation. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7496–7500. doi: 10.1073/pnas.80.24.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee P. C., Bochner B. R., Ames B. N. Diadenosine 5',5"'-P1,P4-tetraphosphate and related adenylylated nucleotides in Salmonella typhimurium. J Biol Chem. 1983 Jun 10;258(11):6827–6834. [PubMed] [Google Scholar]
  27. Neidhardt F. C., VanBogelen R. A., Vaughn V. The genetics and regulation of heat-shock proteins. Annu Rev Genet. 1984;18:295–329. doi: 10.1146/annurev.ge.18.120184.001455. [DOI] [PubMed] [Google Scholar]
  28. Ogilvie A. Determination of diadenosine tetraphosphate (Ap4A) levels in subpicomole quantities by a phosphodiesterase luciferin--luciferase coupled assay: application as a specific assay for diadenosine tetraphosphatase. Anal Biochem. 1981 Aug;115(2):302–307. doi: 10.1016/0003-2697(81)90009-9. [DOI] [PubMed] [Google Scholar]
  29. Plateau P., Blanquet S. Zinc-dependent synthesis of various dinucleoside 5',5' ' '-P1,P3-Tri- or 5'',5' ' '-P1,P4-tetraphosphates by Escherichia coli lysyl-tRNA synthetase. Biochemistry. 1982 Oct 12;21(21):5273–5279. doi: 10.1021/bi00264a024. [DOI] [PubMed] [Google Scholar]
  30. Plateau P., Fromant M., Brevet A., Gesquière A., Blanquet S. Catabolism of bis(5'-nucleosidyl) oligophosphates in Escherichia coli: metal requirements and substrate specificity of homogeneous diadenosine-5',5'''-P1,P4-tetraphosphate pyrophosphohydrolase. Biochemistry. 1985 Feb 12;24(4):914–922. doi: 10.1021/bi00325a016. [DOI] [PubMed] [Google Scholar]
  31. Plateau P., Gueron M., Blanquet S. Determination of dinucleoside 5', 5"'-P1, P4- tetraphosphates by 31P and 1H NMR spectroscopy. Biochimie. 1981 Nov-Dec;63(11-12):827–830. doi: 10.1016/s0300-9084(82)80267-8. [DOI] [PubMed] [Google Scholar]
  32. Polacheck I., Cabib E. A simple procedure for protein determination by the Lowry method in dilute solutions and in the presence of interfering substances. Anal Biochem. 1981 Nov 1;117(2):311–314. doi: 10.1016/0003-2697(81)90784-3. [DOI] [PubMed] [Google Scholar]
  33. Randerath K., Randerath E. Ion-exchange thin-layer chromatography. XV. Preparation, properties and applications of paper-like PEI-cellulose sheets. J Chromatogr. 1966 Apr;22(1):110–117. doi: 10.1016/s0021-9673(01)97076-1. [DOI] [PubMed] [Google Scholar]
  34. Rapaport E., Feldman L. Adenosine(5')tetraphospho(5')adenosine-binding protein of calf thymus. Eur J Biochem. 1984 Jan 2;138(1):111–115. doi: 10.1111/j.1432-1033.1984.tb07888.x. [DOI] [PubMed] [Google Scholar]
  35. Rapaport E., Yogeeswaran G., Zamecnik P. C., Remy P. Covalent modification of phenylalanyl-tRNA synthetase with phenylalanine during the amino acid activation reaction catalyzed by the enzyme. J Biol Chem. 1985 Aug 15;260(17):9509–9512. [PubMed] [Google Scholar]
  36. Rapaport E., Zamecnik P. C., Baril E. F. HeLa cell DNA polymerase alpha is tightly associated with tryptophanyl-tRNA synthetase and diadenosine 5',5"'-P1,P4-tetraphosphate binding activities. Proc Natl Acad Sci U S A. 1981 Feb;78(2):838–842. doi: 10.1073/pnas.78.2.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rymo L., Lundvik L., Lagerkvist U. Subunit structure and binding properties of three amino acid transfer ribonucleic acid ligases. J Biol Chem. 1972 Jun 25;247(12):3888–3897. [PubMed] [Google Scholar]
  38. Taglicht D., Padan E., Oppenheim A. B., Schuldiner S. An alkaline shift induces the heat shock response in Escherichia coli. J Bacteriol. 1987 Feb;169(2):885–887. doi: 10.1128/jb.169.2.885-887.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tilly K., Erickson J., Sharma S., Georgopoulos C. Heat shock regulatory gene rpoH mRNA level increases after heat shock in Escherichia coli. J Bacteriol. 1986 Dec;168(3):1155–1158. doi: 10.1128/jb.168.3.1155-1158.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. VanBogelen R. A., Kelley P. M., Neidhardt F. C. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol. 1987 Jan;169(1):26–32. doi: 10.1128/jb.169.1.26-32.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. VanBogelen R. A., Vaughn V., Neidhardt F. C. Gene for heat-inducible lysyl-tRNA synthetase (lysU) maps near cadA in Escherichia coli. J Bacteriol. 1983 Feb;153(2):1066–1068. doi: 10.1128/jb.153.2.1066-1068.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zamecnik P. C., Stephenson M. L., Janeway C. M., Randerath K. Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase. Biochem Biophys Res Commun. 1966 Jul 6;24(1):91–97. doi: 10.1016/0006-291x(66)90415-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES