Abstract
Adenosine Ri receptors and inhibitory guanine-nucleotide-regulatory components were solubilized from rat cerebral-cortical membranes with sodium cholate. (-)-N6-Phenylisopropyl[2,8-3H]adenosine [( 3H]PIA) binds with high affinity to the soluble receptors, which retain the pharmacological specificity of adenosine Ri receptors observed in membranes. The binding is regulated by bivalent cations and guanine nucleotides. Bivalent cations increase [3H]PIA binding by increasing both the affinity and the apparent number of receptors. Guanine nucleotides decrease agonist binding by increasing the dissociation of the ligand-receptor complex. Adenosine agonists stabilize the high-affinity form of the soluble receptor. The hydrodynamic properties of the adenosine receptor were determined with cholate extracts of membranes that were treated with [3H]PIA. Sucrose-gradient-centrifugation analysis indicates that the receptor has a sedimentation coefficient of 7.7 S. The receptor is eluted from Sepharose 6B columns with an apparent Stokes radius of 7.2 nm. Labelling of either sucrose-gradient or gel-filtration-column fractions with pertussis toxin and [32P]-NAD+ reveals that both the 41,000- and 39,000-Mr substrates overlap with the receptor activity. These studies suggest that the high-affinity adenosine-receptor-binding activity in the cholate extract represents a stable R1-N complex.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bockaert J., Cantau B., Sebben-Perez M. Hormonal inhibition of adenylate cyclase. A crucial role for Mg2+. Mol Pharmacol. 1984 Sep;26(2):180–186. [PubMed] [Google Scholar]
- Choca J. I., Kwatra M. M., Hosey M. M., Green R. D. Specific photoaffinity labelling of inhibitory adenosine receptors. Biochem Biophys Res Commun. 1985 Aug 30;131(1):115–121. doi: 10.1016/0006-291x(85)91778-4. [DOI] [PubMed] [Google Scholar]
- Codina J., Hildebrandt J. D., Birnbaumer L., Sekura R. D. Effects of guanine nucleotides and Mg on human erythrocyte Ni and Ns, the regulatory components of adenylyl cyclase. J Biol Chem. 1984 Sep 25;259(18):11408–11418. [PubMed] [Google Scholar]
- Cooper D. M. Bimodal regulation of adenylate cyclase. FEBS Lett. 1982 Feb 22;138(2):157–163. doi: 10.1016/0014-5793(82)80431-6. [DOI] [PubMed] [Google Scholar]
- Cooper D. M., Yeung S. M., Perez-Reyes E., Owens J. R., Fossom L. H., Gill D. L. Properties required of a functional Ni, the GTP regulatory complex that mediates the inhibitory actions of neurotransmitters on adenylate cyclase. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1985;19:75–86. [PubMed] [Google Scholar]
- Frame L. T., Yeung S. M., Venter J. C., Cooper D. M. Target size of the adenosine Ri receptor. Biochem J. 1986 Apr 15;235(2):621–624. doi: 10.1042/bj2350621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gavish M., Goodman R. R., Snyder S. H. Solubilized adenosine receptors in the brain: regulation of guanine nucleotides. Science. 1982 Mar 26;215(4540):1633–1635. doi: 10.1126/science.6280275. [DOI] [PubMed] [Google Scholar]
- Goodman R. R., Cooper M. J., Gavish M., Snyder S. H. Guanine nucleotide and cation regulation of the binding of [3H]cyclohexyladenosine and [3H]diethylphenylxanthine to adenosine A1 receptors in brain membranes. Mol Pharmacol. 1982 Mar;21(2):329–335. [PubMed] [Google Scholar]
- Hjelmeland L. M., Chrambach A. Solubilization of functional membrane proteins. Methods Enzymol. 1984;104:305–318. doi: 10.1016/s0076-6879(84)04097-0. [DOI] [PubMed] [Google Scholar]
- Kilpatrick B. F., Caron M. G. Agonist binding promotes a guanine nucleotide reversible increase in the apparent size of the bovine anterior pituitary dopamine receptors. J Biol Chem. 1983 Nov 25;258(22):13528–13534. [PubMed] [Google Scholar]
- Klotz K. N., Cristalli G., Grifantini M., Vittori S., Lohse M. J. Photoaffinity labeling of A1-adenosine receptors. J Biol Chem. 1985 Nov 25;260(27):14659–14664. [PubMed] [Google Scholar]
- Klotz K. N., Lohse M. J., Schwabe U. Characterization of the solubilized A1 adenosine receptor from rat brain membranes. J Neurochem. 1986 May;46(5):1528–1534. doi: 10.1111/j.1471-4159.1986.tb01772.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMahon K. K., Hosey M. M. Agonist interactions with cardiac muscarinic receptors. Effects of Mg2+, guanine nucleotides, and monovalent cations. Mol Pharmacol. 1985 Nov;28(5):400–409. [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Nakata H., Fujisawa H. Solubilization and partial characterization of adenosine binding sites from rat brainstem. FEBS Lett. 1983 Jul 11;158(1):93–97. doi: 10.1016/0014-5793(83)80683-8. [DOI] [PubMed] [Google Scholar]
- Neer E. J., Lok J. M., Wolf L. G. Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J Biol Chem. 1984 Nov 25;259(22):14222–14229. [PubMed] [Google Scholar]
- Neer E. J. The size of adenylate cyclase. J Biol Chem. 1974 Oct 25;249(20):6527–6531. [PubMed] [Google Scholar]
- Perez-Reyes E., Cooper D. M. Interaction of the inhibitory GTP regulatory component with soluble cerebral cortical adenylate cyclase. J Neurochem. 1986 May;46(5):1508–1516. doi: 10.1111/j.1471-4159.1986.tb01769.x. [DOI] [PubMed] [Google Scholar]
- Schwabe U., Trost T. Characterization of adenosine receptors in rat brain by (-)[3H]N6-phenylisopropyladenosine. Naunyn Schmiedebergs Arch Pharmacol. 1980 Sep;313(3):179–187. doi: 10.1007/BF00505731. [DOI] [PubMed] [Google Scholar]
- Smith S. K., Limbird L. E. Solubilization of human platelet alpha-adrenergic receptors: evidence that agonist occupancy of the receptor stabilizes receptor--effector interactions. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4026–4030. doi: 10.1073/pnas.78.7.4026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stiles G. L. The A1 adenosine receptor. Solubilization and characterization of a guanine nucleotide-sensitive form of the receptor. J Biol Chem. 1985 Jun 10;260(11):6728–6732. [PubMed] [Google Scholar]
- Yeung S. M., Fossom L. H., Gill D. L., Cooper D. M. Magnesium ion exerts a central role in the regulation of inhibitory adenosine receptors. Biochem J. 1985 Jul 1;229(1):91–100. doi: 10.1042/bj2290091. [DOI] [PMC free article] [PubMed] [Google Scholar]

