Abstract
Guanine nucleotides have been reported to stimulate reticular Ca2+ release. By using the structure-linked latency of microsomal mannose-6-phosphate phosphatase as an index of microsomal permeability [Arion, Ballas, Lange & Wallin (1976) J. Biol. Chem. 251, 4901-4907], the effects of GTP on Ca2+ release and membrane permeability were compared in liver microsomes. In a stripped rough-microsome preparation, GTP caused a dose-dependent increase in mannose 6-phosphate permeability. Half-maximal and maximal effects were observed at 3 microM- and 10 microM-GTP respectively. The time course of the change in membrane permeability coincided with the time course of GTP-dependent Ca2+ release. This increase in microsomal permeability displayed positive to-operativity with respect to GTP (Hill coefficient = 1.8). By analogy to the GTP-dependent Ca2+ release process, guanosine 5'-[gamma-thio]triphosphate and guanosine 5'-[beta gamma-imido]-triphosphate inhibited the ability of GTP to alter microsomal permeability, but were without effect when added alone. In the presence of 50 microM-GTP, complete inhibition of the GTP-dependent increase in microsomal permeability was achieved with 10 microM-guanosine 5'-[gamma-thio]triphosphate, whereas a 25% inhibition was observed with 10 microM-guanosine 5'-[beta gamma-imido]triphosphate. In contrast with previous observations in crude microsomal preparations, GTP-dependent Ca2+ release in the stripped rough-microsome preparation did not require the addition of poly(ethylene glycol), although the latter did stimulate the rate of Ca2+ release. The ability of GTP to alter microsomal permeability was blocked by prior treatment with the thiol reagent p-hydroxymercuribenzoate; complete inhibition was observed after a 10 min exposure to 50 microM. Inhibition was reversed by subsequent treatment with dithiothreitol. The marked similarities between the two GTP-sensitive processes indicate that they may function via the same mechanism.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arion W. J., Wallin B. K., Carlson P. W., Lange A. J. The specificity of glucose 6-phosphatase of intact liver microsomes. J Biol Chem. 1972 Apr 25;247(8):2558–2565. [PubMed] [Google Scholar]
- Arion W. J., Wallin B. K., Lange A. J., Ballas L. M. On the involvement of a glucose 6-phosphate transport system in the function of microsomal glucose 6-phosphatase. Mol Cell Biochem. 1975 Feb 28;6(2):75–83. doi: 10.1007/BF01732001. [DOI] [PubMed] [Google Scholar]
- Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1496–1500. doi: 10.1073/pnas.77.3.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brass L. F., Joseph S. K. A role for inositol triphosphate in intracellular Ca2+ mobilization and granule secretion in platelets. J Biol Chem. 1985 Dec 5;260(28):15172–15179. [PubMed] [Google Scholar]
- Chueh S. H., Gill D. L. Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms. J Biol Chem. 1986 Oct 25;261(30):13883–13886. [PubMed] [Google Scholar]
- Dawson A. P., Comerford J. G., Fulton D. V. The effect of GTP on inositol 1,4,5-trisphosphate-stimulated Ca2+ efflux from a rat liver microsomal fraction. Is a GTP-dependent protein phosphorylation involved? Biochem J. 1986 Mar 1;234(2):311–315. doi: 10.1042/bj2340311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson A. P. GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes. FEBS Lett. 1985 Jun 3;185(1):147–150. doi: 10.1016/0014-5793(85)80759-6. [DOI] [PubMed] [Google Scholar]
- Dawson A. P., Hills G., Comerford J. G. The mechanism of action of GTP on Ca2+ efflux from rat liver microsomal vesicles. Biochem J. 1987 May 15;244(1):87–92. doi: 10.1042/bj2440087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill D. L., Ueda T., Chueh S. H., Noel M. W. Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism. Nature. 1986 Apr 3;320(6061):461–464. doi: 10.1038/320461a0. [DOI] [PubMed] [Google Scholar]
- Godelaine D., Beaufay H., Wibo M., Amar-Costesec A. The dolichol pathway of protein glycosylation in rat liver. Stimulation by GTP of the incorporation of N-acetylglucosamine in endogenous lipids and proteins of rough microsomes treated with pyrophosphate. Eur J Biochem. 1979 May 2;96(1):17–26. doi: 10.1111/j.1432-1033.1979.tb13008.x. [DOI] [PubMed] [Google Scholar]
- Godelaine D., Beaufay H., Wibo M., Ravoet A. M. Alteration of membrane barrier in stripped rough microsomes from rat liver on incubation with GTP: its relevance to the stimulation by this nucleotide of the dolichol pathway for protein glycosylation. J Cell Biol. 1983 Aug;97(2):340–350. doi: 10.1083/jcb.97.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godelaine D., Beaufay H., Wibo M. The dolichol pathway of protein glycosylation in rat liver. Incorporation of mannose into endogenous lipids and proteins of rough microsomes. Eur J Biochem. 1979 May 2;96(1):27–34. doi: 10.1111/j.1432-1033.1979.tb13009.x. [DOI] [PubMed] [Google Scholar]
- Hamachi T., Hirata M., Kimura Y., Ikebe T., Ishimatsu T., Yamaguchi K., Koga T. Effect of guanosine triphosphate on the release and uptake of Ca2+ in saponin-permeabilized macrophages and the skeletal-muscle sarcoplasmic reticulum. Biochem J. 1987 Feb 15;242(1):253–260. doi: 10.1042/bj2420253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henne V., Söling H. D. Guanosine 5'-triphosphate releases calcium from rat liver and guinea pig parotid gland endoplasmic reticulum independently of inositol 1,4,5-trisphosphate. FEBS Lett. 1986 Jul 7;202(2):267–273. doi: 10.1016/0014-5793(86)80699-8. [DOI] [PubMed] [Google Scholar]
- Jean T., Klee C. B. Calcium modulation of inositol 1,4,5-trisphosphate-induced calcium release from neuroblastoma x glioma hybrid (NG108-15) microsomes. J Biol Chem. 1986 Dec 15;261(35):16414–16420. [PubMed] [Google Scholar]
- Joseph S. K., Williamson J. R. Characteristics of inositol trisphosphate-mediated Ca2+ release from permeabilized hepatocytes. J Biol Chem. 1986 Nov 5;261(31):14658–14664. [PubMed] [Google Scholar]
- Paiement J., Beaufay H., Godelaine D. Coalescence of microsomal vesicles from rat liver: a phenomenon occurring in parallel with enhancement of the glycosylation activity during incubation of stripped rough microsomes with GTP. J Cell Biol. 1980 Jul;86(1):29–37. doi: 10.1083/jcb.86.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paiement J., Bergeron J. J. Localization of GTP-stimulated core glycosylation to fused microsomes. J Cell Biol. 1983 Jun;96(6):1791–1796. doi: 10.1083/jcb.96.6.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paiement J., Rindress D., Smith C. E., Poliquin L., Bergeron J. J. Properties of a GTP sensitive microdomain in rough microsomes. Biochim Biophys Acta. 1987 Mar 26;898(1):6–22. doi: 10.1016/0005-2736(87)90105-2. [DOI] [PubMed] [Google Scholar]
- Pain V. M. Initiation of protein synthesis in mammalian cells. Biochem J. 1986 May 1;235(3):625–637. doi: 10.1042/bj2350625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prentki M., Janjic D., Wollheim C. B. The regulation of extramitochondrial steady state free Ca2+ concentration by rat insulinoma mitochondria. J Biol Chem. 1983 Jun 25;258(12):7597–7602. [PubMed] [Google Scholar]
- Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
- Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
- Smith J. B., Smith L., Higgins B. L. Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J Biol Chem. 1985 Nov 25;260(27):14413–14416. [PubMed] [Google Scholar]
- Ueda T., Chueh S. H., Noel M. W., Gill D. L. Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line. J Biol Chem. 1986 Mar 5;261(7):3184–3192. [PubMed] [Google Scholar]
- Warren G. Protein transport. Signals and salvage sequences. Nature. 1987 May 7;327(6117):17–18. doi: 10.1038/327017a0. [DOI] [PubMed] [Google Scholar]
- Wolf B. A., Florholmen J., Colca J. R., McDaniel M. L. GTP mobilization of Ca2+ from the endoplasmic reticulum of islets. Comparison with myo-inositol 1,4,5-trisphosphate. Biochem J. 1987 Feb 15;242(1):137–141. doi: 10.1042/bj2420137. [DOI] [PMC free article] [PubMed] [Google Scholar]
