Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Dec 15;248(3):883–887. doi: 10.1042/bj2480883

Cyclosporin A augments angiotensin II-stimulated rise in intracellular free calcium in vascular smooth muscle cells.

J Pfeilschifter 1, U T Rüegg 1
PMCID: PMC1148632  PMID: 3435490

Abstract

Pretreatment of rat vascular smooth muscle cells with the immunosuppressive drug cyclosporin A caused concentration- and time-dependent increases in both the amplitude and duration of the angiotensin II-induced rise in cytosolic free calcium, as measured with quin 2. Cyclosporin A had no significant effect on basal quin 2 fluorescence. However, cyclosporin A increased the basal 45Ca2+ influx. This stimulation of 45Ca2+ influx was not blocked by nifedipine (10(-6) M). Cyclosporin A also augmented the angiotensin II-stimulated influx and efflux of 45Ca2+. These results demonstrate that cyclosporin A increases the permeability of the plasma membrane for Ca2+ and also augments the angiotensin II-induced increases in cytosolic free calcium.

Full text

PDF
883

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W., Brock T. A., Gimbrone M. A., Jr, Rittenhouse S. E. Angiotensin increases inositol trisphosphate and calcium in vascular smooth muscle. Hypertension. 1985 May-Jun;7(3 Pt 1):447–451. [PubMed] [Google Scholar]
  2. Bellet M., Cabrol C., Sassano P., Léger P., Corvol P., Ménard J. Systemic hypertension after cardiac transplantation: effect of cyclosporine on the renin-angiotensin-aldosterone system. Am J Cardiol. 1985 Dec 1;56(15):927–931. doi: 10.1016/0002-9149(85)90406-0. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  4. Capponi A. M., Lew P. D., Vallotton M. B. Cytosolic free calcium levels in monolayers of cultured rat aortic smooth muscle cells. Effects of angiotensin II and vasopressin. J Biol Chem. 1985 Jul 5;260(13):7836–7842. [PubMed] [Google Scholar]
  5. Colombani P. M., Robb A., Hess A. D. Cyclosporin A binding to calmodulin: a possible site of action on T lymphocytes. Science. 1985 Apr 19;228(4697):337–339. doi: 10.1126/science.3885394. [DOI] [PubMed] [Google Scholar]
  6. Debus E., Weber K., Osborn M. Monoclonal antibodies to desmin, the muscle-specific intermediate filament protein. EMBO J. 1983;2(12):2305–2312. doi: 10.1002/j.1460-2075.1983.tb01738.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Granelli-Piperno A., Inaba K., Steinman R. M. Stimulation of lymphokine release from T lymphoblasts. Requirement for mRNA synthesis and inhibition by cyclosporin A. J Exp Med. 1984 Dec 1;160(6):1792–1802. doi: 10.1084/jem.160.6.1792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griffith B. P., Hardesty R. L., Trento A., Lee A., Bahnson H. T. Targeted blood levels of cyclosporin for cardiac transplantation. J Thorac Cardiovasc Surg. 1984 Dec;88(6):952–957. [PubMed] [Google Scholar]
  9. Handschumacher R. E., Harding M. W., Rice J., Drugge R. J., Speicher D. W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984 Nov 2;226(4674):544–547. doi: 10.1126/science.6238408. [DOI] [PubMed] [Google Scholar]
  10. Hiestand P. C. Cyclosporin A (Sandimmun) modulates the Ca2+ uptake of mitogen-stimulated lymphocytes. Agents Actions. 1984 Dec;15(5-6):556–561. doi: 10.1007/BF01966774. [DOI] [PubMed] [Google Scholar]
  11. Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kahan B. D. Cyclosporin A: a selective anti-T cell agent. Clin Haematol. 1982 Oct;11(3):743–761. [PubMed] [Google Scholar]
  13. Kuno M., Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature. 1987 Mar 19;326(6110):301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lamb F. S., Webb R. C. Cyclosporine augments reactivity of isolated blood vessels. Life Sci. 1987 Jun 29;40(26):2571–2578. doi: 10.1016/0024-3205(87)90080-4. [DOI] [PubMed] [Google Scholar]
  16. LeGrue S. J., Turner R., Weisbrodt N., Dedman J. R. Does the binding of cyclosporine to calmodulin result in immunosuppression? Science. 1986 Oct 3;234(4772):68–71. doi: 10.1126/science.3749892. [DOI] [PubMed] [Google Scholar]
  17. Murphy D. B. Assembly-disassembly purification and characterization of microtubule protein without glycerol. Methods Cell Biol. 1982;24:31–49. doi: 10.1016/s0091-679x(08)60646-9. [DOI] [PubMed] [Google Scholar]
  18. Nicchitta C. V., Kamoun M., Williamson J. R. Cyclosporine augments receptor-mediated cellular Ca2+ fluxes in isolated hepatocytes. J Biol Chem. 1985 Nov 5;260(25):13613–13618. [PubMed] [Google Scholar]
  19. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  20. Orosz C. G., Roopenian D. C., Widmer M. B., Bach F. H. Analysis of cloned T cell function. II. Differential blockade of various cloned T cell functions by cyclosporine. Transplantation. 1983 Dec;36(6):706–711. doi: 10.1097/00007890-198336060-00024. [DOI] [PubMed] [Google Scholar]
  21. Pfeilschifter J., Bauer C. Pertussis toxin abolishes angiotensin II-induced phosphoinositide hydrolysis and prostaglandin synthesis in rat renal mesangial cells. Biochem J. 1986 May 15;236(1):289–294. doi: 10.1042/bj2360289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pfeilschifter J., Kurtz A., Bauer C. Role of phospholipase C and protein kinase C in vasoconstrictor-induced prostaglandin synthesis in cultured rat renal mesangial cells. Biochem J. 1986 Feb 15;234(1):125–130. doi: 10.1042/bj2340125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shevach E. M. The effects of cyclosporin A on the immune system. Annu Rev Immunol. 1985;3:397–423. doi: 10.1146/annurev.iy.03.040185.002145. [DOI] [PubMed] [Google Scholar]
  25. Smith J. B., Smith L., Brown E. R., Barnes D., Sabir M. A., Davis J. S., Farese R. V. Angiotensin II rapidly increases phosphatidate-phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7812–7816. doi: 10.1073/pnas.81.24.7812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sommerville L. E., Hartshorne D. J. Intracellular calcium and smooth muscle contraction. Cell Calcium. 1986 Dec;7(5-6):353–364. doi: 10.1016/0143-4160(86)90038-2. [DOI] [PubMed] [Google Scholar]
  27. Travo P., Weber K., Osborn M. Co-existence of vimentin and desmin type intermediate filaments in a subpopulation of adult rat vascular smooth muscle cells growing in primary culture. Exp Cell Res. 1982 May;139(1):87–94. doi: 10.1016/0014-4827(82)90321-4. [DOI] [PubMed] [Google Scholar]
  28. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Whiting P. H., Thomson A. W., Blair J. T., Simpson J. G. Experimental cyclosporin A nephrotoxicity. Br J Exp Pathol. 1982 Feb;63(1):88–94. [PMC free article] [PubMed] [Google Scholar]
  30. Xue H., Bukoski R. D., McCarron D. A., Bennett W. M. Induction of contraction in isolated rat aorta by cyclosporine. Transplantation. 1987 May;43(5):715–718. doi: 10.1097/00007890-198705000-00022. [DOI] [PubMed] [Google Scholar]
  31. Yamaguchi K., Hirata M., Kuriyama H. Calmodulin activates inositol 1,4,5-trisphosphate 3-kinase activity in pig aortic smooth muscle. Biochem J. 1987 Jun 15;244(3):787–791. doi: 10.1042/bj2440787. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES