Abstract
The interaction of normal and acute-phase high-density lipoproteins of the subclass 3 (N-HDL3 and AP-HDL3) with human neutrophils and the accompanying degradation of HDL3 apolipoproteins have been studied in vitro. The chemical composition of normal and acute-phase HDL3 was similar except that serum amyloid A protein (apo-SAA) was a major apolipoprotein in AP-HDL3 (approx. 30% of total apolipoproteins). 125I-labelled AP-HDL3 was degraded 5-10 times faster than 125I-labelled N-HDL3 during incubation with neutrophils or neutrophil-conditioned medium. Apo-SAA, like apolipoprotein A-II (apo-A-II), was more susceptible than apolipoprotein A-I (apo-A-I) to the action of proteases released from the cells. The amounts of cell-associated AP-HDL3 apolipoproteins at saturation were up to 2.8 times greater than N-HDL3 apolipoproteins; while apo-A-I was the major cell-associated apolipoprotein when N-HDL3 was bound, apo-SAA constituted 80% of the apolipoproteins bound in the case of AP-HDL3. The associated intact apo-SAA was mostly surface-bound as it was accessible to the action of exogenous trypsin. alpha 1-Antitrypsin-resistant (alpha 1-AT-resistant) cellular degradation of AP-HDL3 apolipoproteins also occurred; experiments in which pulse-chase labelling was performed or lysosomotropic agents were used indicated that insignificant intracellular degradation occurred which points to the involvement of cell-surface proteases in this degradation.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bausserman L. L., Herbert P. N., Rodger R., Nicolosi R. J. Rapid clearance of serum amyloid A from high-density lipoproteins. Biochim Biophys Acta. 1984 Feb 9;792(2):186–191. doi: 10.1016/0005-2760(84)90221-2. [DOI] [PubMed] [Google Scholar]
- Benditt E. P., Eriksen N. Amyloid protein SAA is associated with high density lipoprotein from human serum. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4025–4028. doi: 10.1073/pnas.74.9.4025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bierman E. L., Stein O., Stein Y. Lipoprotein uptake and metabolism by rat aortic smooth muscle cells in tissue culture. Circ Res. 1974 Jul;35(1):136–150. doi: 10.1161/01.res.35.1.136. [DOI] [PubMed] [Google Scholar]
- Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
- Byrne R. E., Polacek D., Gordon J. I., Scanu A. M. The enzyme that cleaves apolipoprotein A-II upon in vitro incubation of human plasma high-density lipoprotein-3 with blood polymorphonuclear cells is an elastase. J Biol Chem. 1984 Dec 10;259(23):14537–14543. [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Clifton P. M., Mackinnon A. M., Barter P. J. Effects of serum amyloid A protein (SAA) on composition, size, and density of high density lipoproteins in subjects with myocardial infarction. J Lipid Res. 1985 Dec;26(12):1389–1398. [PubMed] [Google Scholar]
- Coetzee G. A., Strachan A. F., van der Westhuyzen D. R., Hoppe H. C., Jeenah M. S., de Beer F. C. Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition. J Biol Chem. 1986 Jul 25;261(21):9644–9651. [PubMed] [Google Scholar]
- Eisenberg S. High density lipoprotein metabolism. J Lipid Res. 1984 Oct;25(10):1017–1058. [PubMed] [Google Scholar]
- Eriksen N., Benditt E. P. Trauma, high density lipoproteins, and serum amyloid protein A. Clin Chim Acta. 1984 Jul 16;140(2):139–149. doi: 10.1016/0009-8981(84)90338-3. [DOI] [PubMed] [Google Scholar]
- Godenir N. L., Jeenah M. S., Coetzee G. A., Van der Westhuyzen D. R., Strachan A. F., De Beer F. C. Standardisation of the quantitation of serum amyloid A protein (SAA) in human serum. J Immunol Methods. 1985 Nov 7;83(2):217–225. doi: 10.1016/0022-1759(85)90243-1. [DOI] [PubMed] [Google Scholar]
- Hoffman J. S., Benditt E. P. Changes in high density lipoprotein content following endotoxin administration in the mouse. Formation of serum amyloid protein-rich subfractions. J Biol Chem. 1982 Sep 10;257(17):10510–10517. [PubMed] [Google Scholar]
- Husebekk A., Skogen B., Husby G., Marhaug G. Transformation of amyloid precursor SAA to protein AA and incorporation in amyloid fibrils in vivo. Scand J Immunol. 1985 Mar;21(3):283–287. doi: 10.1111/j.1365-3083.1985.tb01431.x. [DOI] [PubMed] [Google Scholar]
- Kisilevsky R., Boudreau L., Foster D. Kinetics of amyloid deposition. II. The effects of dimethylsulfoxide and colchicine therapy. Lab Invest. 1983 Jan;48(1):60–67. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lavie G., Zucker-Franklin D., Franklin E. C. Elastase-type proteases on the surface of human blood monocytes: possible role in amyloid formation. J Immunol. 1980 Jul;125(1):175–180. [PubMed] [Google Scholar]
- Morley J. J., Kushner I. Serum C-reactive protein levels in disease. Ann N Y Acad Sci. 1982;389:406–418. doi: 10.1111/j.1749-6632.1982.tb22153.x. [DOI] [PubMed] [Google Scholar]
- Parks J. S., Rudel L. L. Alteration of high density lipoprotein subfraction distribution with induction of serum amyloid A protein (SAA) in the nonhuman primate. J Lipid Res. 1985 Jan;26(1):82–91. [PubMed] [Google Scholar]
- Parks J. S., Rudel L. L. Metabolism of the serum amyloid A proteins (SSA) in high-density lipoproteins and chylomicrons of nonhuman primates (vervet monkey). Am J Pathol. 1983 Sep;112(3):243–249. [PMC free article] [PubMed] [Google Scholar]
- Polacek D., Byrne R. E., Burrous M., Scanu A. M. Factors controlling the release from human blood polymorphonuclear cells in vitro of a proteolytic activity directed against apolipoprotein A-II. J Biol Chem. 1984 Dec 10;259(23):14531–14536. [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Michetti M., Sacco O., Sparatore B., Salamino F., Damiani G., Horecker B. L. Cytolytic effects of neutrophils: role for a membrane-bound neutral proteinase. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1685–1689. doi: 10.1073/pnas.83.6.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramadori G., Sipe J. D., Dinarello C. A., Mizel S. B., Colten H. R. Pretranslational modulation of acute phase hepatic protein synthesis by murine recombinant interleukin 1 (IL-1) and purified human IL-1. J Exp Med. 1985 Sep 1;162(3):930–942. doi: 10.1084/jem.162.3.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shephard E. G., van Helden P. D., Strauss M., Böhm L., De Beer F. C. Functional effects of CRP binding to nuclei. Immunology. 1986 Jul;58(3):489–494. [PMC free article] [PubMed] [Google Scholar]
- Silverman S. L., Cathcart E. S., Skinner M., Cohen A. S. The degradation of serum amyloid A protein by activated polymorphonuclear leucocytes: participation of granulocytic elastase. Immunology. 1982 Aug;46(4):737–744. [PMC free article] [PubMed] [Google Scholar]