Abstract
We have used chemical and enzymic protein engineering techniques to create analogues of the semisynthetic two-fragment complex (1-37).(38-104) of mitochondrial cytochrome c. This complex, unlike the natural product of specific tryptic cleavage, (1-38).(39-104), from which it is prepared, quite closely resembles the parent protein in functional characteristics and is thus a suitable substrate for modifications designed to study structure-function relations. We have replaced the invariant Arg-38 and the conserved Lys-39 with a range of alternative amino acids and have studied the effects on the principal functional parameters. The hydrogen-bonding capacity of Arg-38 is crucial to the stabilization of the bottom omega-loop, while the positive charge of Lys-39 helps maintain the high redox potential by electrostatic effects at the haem iron.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ochi H., Hata Y., Tanaka N., Kakudo M., Sakurai T., Aihara S., Morita Y. Structure of rice ferricytochrome c at 2.0 A resolution. J Mol Biol. 1983 May 25;166(3):407–418. doi: 10.1016/s0022-2836(83)80092-8. [DOI] [PubMed] [Google Scholar]
- Proudfoot A. E., Wallace C. J., Harris D. E., Offord R. E. A new non-covalent complex of semisynthetically modified tryptic fragments of cytochrome c. Biochem J. 1986 Oct 15;239(2):333–337. doi: 10.1042/bj2390333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rees D. C. Experimental evaluation of the effective dielectric constant of proteins. J Mol Biol. 1980 Aug 15;141(3):323–326. doi: 10.1016/0022-2836(80)90184-9. [DOI] [PubMed] [Google Scholar]
- Robinson M. N., Boswell A. P., Huang Z. X., Eley C. G., Moore G. R. The conformation of eukaryotic cytochrome c around residues 39, 57, 59 and 74. Biochem J. 1983 Sep 1;213(3):687–700. doi: 10.1042/bj2130687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose K., De Pury H., Offord R. E. Rapid preparation of human insulin and insulin analogues in high yield by enzyme-assisted semi-synthesis. Biochem J. 1983 Jun 1;211(3):671–676. doi: 10.1042/bj2110671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takano T., Dickerson R. E. Conformation change of cytochrome c. II. Ferricytochrome c refinement at 1.8 A and comparison with the ferrocytochrome structure. J Mol Biol. 1981 Nov 25;153(1):95–115. doi: 10.1016/0022-2836(81)90529-5. [DOI] [PubMed] [Google Scholar]
- Tanaka N., Yamane T., Tsukihara T., Ashida T., Kakudo M. The crystal structure of bonito (katsuo) ferrocytochrome c at 2.3 A resolution. II. Structure and function. J Biochem. 1975 Jan 1;77(1?):147–162. [PubMed] [Google Scholar]
- Wallace C. J., Corradin G., Marchiori F., Borin G. Cytochrome c chimerae from natural and synthetic fragments: significance of the biological properties. Biopolymers. 1986 Nov;25(11):2121–2132. doi: 10.1002/bip.360251107. [DOI] [PubMed] [Google Scholar]
- Wallace C. J., Corthésy B. E. Protein engineering of cytochrome c by semisynthesis: substitutions at glutamic acid 66. Protein Eng. 1986 Oct-Nov;1(1):23–27. [PubMed] [Google Scholar]
- Wallace C. J., Proudfoot A. E. On the relationship between oxidation-reduction potential and biological activity in cytochrome c analogues. Results from four novel two-fragment complexes. Biochem J. 1987 Aug 1;245(3):773–779. doi: 10.1042/bj2450773. [DOI] [PMC free article] [PubMed] [Google Scholar]
