Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jan 1;249(1):163–170. doi: 10.1042/bj2490163

Purification and properties of an extracellular glucoamylase from a diastatic strain of Saccharomyces cerevisiae.

M J Kleinman 1, A E Wilkinson 1, I P Wright 1, I H Evans 1, E A Bevan 1
PMCID: PMC1148680  PMID: 3124820

Abstract

The extracellular glucoamylase from certain strains of Saccharomyces cerevisiae can be purified from culture medium by a simple chromatographic procedure. The native enzyme is heavily glycosylated and has an Mr of about 250,000, but gel filtration indicates the existence of oligomers of larger size. Dissociation yields a form of Mr about 70,000. The glucoamylase is rich in serine and threonine and in aspartic acid plus asparagine, and has a pI of 4.62 and a pH optimum of 4.5-6.5. The thermostability and resistance to denaturants of the yeast enzyme is compared with those of two other fungal glucoamylases. Kinetic data for the yeast enzyme and a variety of substrates is presented; the enzyme is particularly ineffective in cleaving alpha-(1----6)-glycosidic bonds.

Full text

PDF
163

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of molecular size and molecular weights of biological compounds by gel filtration. Methods Biochem Anal. 1970;18:1–53. [PubMed] [Google Scholar]
  2. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BEAVEN G. H., HOLIDAY E. R. Ultraviolet absorption spectra of proteins and amino acids. Adv Protein Chem. 1952;7:319–386. doi: 10.1016/s0065-3233(08)60022-4. [DOI] [PubMed] [Google Scholar]
  4. Bigelow C. C. On the average hydrophobicity of proteins and the relation between it and protein structure. J Theor Biol. 1967 Aug;16(2):187–211. doi: 10.1016/0022-5193(67)90004-5. [DOI] [PubMed] [Google Scholar]
  5. Chu F. K., Trimble R. B., Maley F. The effect of carbohydrate depletion on the properties of yeast external invertase. J Biol Chem. 1978 Dec 25;253(24):8691–8693. [PubMed] [Google Scholar]
  6. Chu F. K., Watorek W., Maley F. Factors affecting the oligomeric structure of yeast external invertase. Arch Biochem Biophys. 1983 Jun;223(2):543–555. doi: 10.1016/0003-9861(83)90619-7. [DOI] [PubMed] [Google Scholar]
  7. Colonna W. J., Magee P. T. Glycogenolytic enzymes in sporulating yeast. J Bacteriol. 1978 Jun;134(3):844–853. doi: 10.1128/jb.134.3.844-853.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KOFFLER H. Protoplasmic differences between mesophiles and thermophiles. Bacteriol Rev. 1957 Dec;21(4):227–240. doi: 10.1128/br.21.4.227-240.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laluce C., Mattoon J. R. Development of Rapidly Fermenting Strains of Saccharomyces diastaticus for Direct Conversion of Starch and Dextrins to Ethanol. Appl Environ Microbiol. 1984 Jul;48(1):17–25. doi: 10.1128/aem.48.1.17-25.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lineback D. R., Russell I. J., Rasmussen C. Two forms of the glucoamylase of Aspergillus niger. Arch Biochem Biophys. 1969 Nov;134(2):539–553. doi: 10.1016/0003-9861(69)90316-6. [DOI] [PubMed] [Google Scholar]
  11. Pazur J. H., Knull H. R., Simpson D. L. Glycoenzymes: a note on the role for the carbohydrate moieties. Biochem Biophys Res Commun. 1970 Jul 13;40(1):110–116. doi: 10.1016/0006-291x(70)91053-3. [DOI] [PubMed] [Google Scholar]
  12. Pazur J. H., Tominaga Y., Forsberg L. S., Simpson D. L. Glycoenzymes: an unusual type of glycoprotein structure for a glucoamylase. Carbohydr Res. 1980 Sep 8;84(1):103–114. doi: 10.1016/s0008-6215(00)85434-8. [DOI] [PubMed] [Google Scholar]
  13. Struck D. K., Lennarz W. J., Brew K. Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with alpha-lactalbumin. J Biol Chem. 1978 Aug 25;253(16):5786–5794. [PubMed] [Google Scholar]
  14. Takahashi T., Inokuchi N., Irie M. Purification and characterization of a glucoamylase from Aspergillus saitoi. J Biochem. 1981 Jan;89(1):125–134. doi: 10.1093/oxfordjournals.jbchem.a133172. [DOI] [PubMed] [Google Scholar]
  15. Takahashi T., Tsuchida Y., Irie M. Purification and some properties of three forms of glucoamylase from a Rhizopus species. J Biochem. 1978 Nov;84(5):1183–1194. doi: 10.1093/oxfordjournals.jbchem.a132235. [DOI] [PubMed] [Google Scholar]
  16. Tarentino A. L., Plummer T. H., Jr, Maley F. The release of intact oligosaccharides from specific glycoproteins by endo-beta-N-acetylglucosaminidase H. J Biol Chem. 1974 Feb 10;249(3):818–824. [PubMed] [Google Scholar]
  17. Yamashita I., Maemura T., Hatano T., Fukui S. Polymorphic extracellular glucoamylase genes and their evolutionary origin in the yeast Saccharomyces diastaticus. J Bacteriol. 1985 Feb;161(2):574–582. doi: 10.1128/jb.161.2.574-582.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yamashita I., Suzuki K., Fukui S. Nucleotide sequence of the extracellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus. J Bacteriol. 1985 Feb;161(2):567–573. doi: 10.1128/jb.161.2.567-573.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES