Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jan 1;249(1):191–200. doi: 10.1042/bj2490191

Synthesis of very long chain (up to 36 carbon) tetra, penta and hexaenoic fatty acids in retina.

N P Rotstein 1, M I Aveldaño 1
PMCID: PMC1148684  PMID: 3342007

Abstract

The synthesis of very long chain (C24 to C36) polyunsaturated (four, five and six double bonds) fatty acids (VLCPUFA) is investigated in bovine retina using [14C]acetate. Saturates on the one hand (mainly palmitate), and polyenes on the other (mainly VLCPUFA), incorporate most of the label found in lipids. Phosphatidylcholine (PC) is the most highly labelled lipid class, since both types of 14C-labelled fatty acids, but especially this novel series of VLCPUFA, are concentrated in this phospholipid. Radioactivity from [14C]acetate is found in very long chain tetra, penta and hexaenoic fatty acids of PC. The labelling of 20:4(n - 6), 20:5(n - 3), 22:5(n - 6) and 22:6(n - 3) is much lower than that of longer polyenes of each of these series, indicating that VLCPUFA are synthesized in situ by successive elongations of the above polyenes, pre-existing in retina lipids. In various subcellular fractions isolated from retinas after incubations with [14C]acetate (including cytosol, microsomes, mitochondria and photoreceptor membranes), the labelling of the VLCPUFA of PC is very high, even at relatively short intervals of incubation. The results suggest that not only the synthesis but also the intracellular traffic among membranes of VLCPUFA-containing species of PC are very active processes in the retina.

Full text

PDF
191

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. E., Kelleher P. A., Maude M. B. Metabolism of phosphatidylethanolamine in the frog retina. Biochim Biophys Acta. 1980 Nov 7;620(2):227–235. doi: 10.1016/0005-2760(80)90204-0. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. E., Maude M. B., Kelleher P. A., Maida T. M., Basinger S. F. Metabolism of phosphatidylcholine in the frog retina. Biochim Biophys Acta. 1980 Nov 7;620(2):212–226. doi: 10.1016/0005-2760(80)90203-9. [DOI] [PubMed] [Google Scholar]
  3. Arvidson G. A. Structural and metabolic heterogeneity of rat liver glycerophosphatides. Eur J Biochem. 1968 May;4(4):478–486. doi: 10.1111/j.1432-1033.1968.tb00237.x. [DOI] [PubMed] [Google Scholar]
  4. Aveldaño M. I. A novel group of very long chain polyenoic fatty acids in dipolyunsaturated phosphatidylcholines from vertebrate retina. J Biol Chem. 1987 Jan 25;262(3):1172–1179. [PubMed] [Google Scholar]
  5. Aveldaño M. I., Bazán N. G. Molecular species of phosphatidylcholine, -ethanolamine, -serine, and -inositol in microsomal and photoreceptor membranes of bovine retina. J Lipid Res. 1983 May;24(5):620–627. [PubMed] [Google Scholar]
  6. Aveldaño M. I., Sprecher H. Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J Biol Chem. 1987 Jan 25;262(3):1180–1186. [PubMed] [Google Scholar]
  7. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  8. Bazan H. E., Careaga M. M., Sprecher H., Bazan N. G. Chain elongation and desaturation of eicosapentaenoate to docosahexaenoate and phospholipid labeling in the rat retina in vivo. Biochim Biophys Acta. 1982 Jul 20;712(1):123–128. doi: 10.1016/0005-2760(82)90093-5. [DOI] [PubMed] [Google Scholar]
  9. Brenner R. R. Nutritional and hormonal factors influencing desaturation of essential fatty acids. Prog Lipid Res. 1981;20:41–47. doi: 10.1016/0163-7827(81)90012-6. [DOI] [PubMed] [Google Scholar]
  10. Dienel G., Ryder E., Greengard O. Distribution of mitochondrial enzymes between the perikaryal and synaptic fractions of immature and adult rat brain. Biochim Biophys Acta. 1977 Feb 28;496(2):484–494. doi: 10.1016/0304-4165(77)90330-0. [DOI] [PubMed] [Google Scholar]
  11. Dudley P. A., Anderson R. E. Phospholipid transfer protein from bovine retina with high activity towards retinal rod disc membranes. FEBS Lett. 1978 Nov 1;95(1):57–60. doi: 10.1016/0014-5793(78)80051-9. [DOI] [PubMed] [Google Scholar]
  12. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  13. Futterman S., Rollins M. H., Vacano E. The effect of alloxan diabetes on polyenoic fatty acid synthesis by retinal tissue. Biochim Biophys Acta. 1968 Oct 22;164(2):433–434. doi: 10.1016/0005-2760(68)90170-7. [DOI] [PubMed] [Google Scholar]
  14. Grogan W. M. Metabolism of arachidonate in rat testis: characterization of 26-30 carbon polyenoic acids. Lipids. 1984 May;19(5):341–346. doi: 10.1007/BF02534785. [DOI] [PubMed] [Google Scholar]
  15. Guisto N. M., de Boschero M. I., Sprecher H., Aveldaño M. I. Active labeling of phosphatidylcholines by [1-14C]docosahexaenoate in isolated photoreceptor membranes. Biochim Biophys Acta. 1986 Aug 7;860(1):137–148. doi: 10.1016/0005-2736(86)90508-0. [DOI] [PubMed] [Google Scholar]
  16. MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
  17. Miljanich G. P., Sklar L. A., White D. L., Dratz E. A. Disaturated and dipolyunsaturated phospholipids in the bovine retinal rod outer segment disk membrane. Biochim Biophys Acta. 1979 Apr 4;552(2):294–306. doi: 10.1016/0005-2736(79)90284-0. [DOI] [PubMed] [Google Scholar]
  18. Papermaster D. S. Preparation of retinal rod outer segments. Methods Enzymol. 1982;81:48–52. doi: 10.1016/s0076-6879(82)81010-0. [DOI] [PubMed] [Google Scholar]
  19. Poulos A., Sharp P., Singh H., Johnson D., Fellenberg A., Pollard A. Detection of a homologous series of C26-C38 polyenoic fatty acids in the brain of patients without peroxisomes (Zellweger's syndrome). Biochem J. 1986 Apr 15;235(2):607–610. doi: 10.1042/bj2350607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenthal M. D., Hill J. R. Human vascular endothelial cells synthesize and release 24- and 26-carbon polyunsaturated fatty acids. Biochim Biophys Acta. 1984 Sep 12;795(2):171–178. doi: 10.1016/0005-2760(84)90063-8. [DOI] [PubMed] [Google Scholar]
  21. Rotstein N. P., Aveldaño M. I. Labeling of lipids of retina subcellular fractions by [1-14C]eicosatetraenoate (20:4(n-6)) docosapentaenoate (22:5(n-3)) and docosahexaenoate (22:6(n-3)). Biochim Biophys Acta. 1987 Sep 25;921(2):221–234. doi: 10.1016/0005-2760(87)90022-1. [DOI] [PubMed] [Google Scholar]
  22. Rotstein N. P., Aveldaño M. I. Labeling of phosphatidylcholines of retina subcellular fractions by [1-14C]eicosatetraenoate (20:4(n-6)), docosapentaenoate (22:5(n-3)) and docosahexaenoate (22:6(n-3)). Biochim Biophys Acta. 1987 Sep 25;921(2):235–244. doi: 10.1016/0005-2760(87)90023-3. [DOI] [PubMed] [Google Scholar]
  23. Rotstein N. P., Ilincheta de Boschero M. G., Giusto N. M., Aveldaño M. I. Effects of aging on the composition and metabolism of docosahexaenoate-containing lipids of retina. Lipids. 1987 Apr;22(4):253–260. doi: 10.1007/BF02533988. [DOI] [PubMed] [Google Scholar]
  24. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  25. Smith H. G., Jr, Litman B. J. Preparation of osmotically intact rod outer segment disks by Ficoll flotation. Methods Enzymol. 1982;81:57–61. doi: 10.1016/s0076-6879(82)81012-4. [DOI] [PubMed] [Google Scholar]
  26. Sprecher H. Biochemistry of essential fatty acids. Prog Lipid Res. 1981;20:13–22. doi: 10.1016/0163-7827(81)90009-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES