Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jan 1;249(1):215–222. doi: 10.1042/bj2490215

Identification by fast atom bombardment mass spectrometry of insulin fragments produced by insulin proteinase.

L A Savoy 1, R M Jones 1, S Pochon 1, J G Davies 1, A V Muir 1, R E Offord 1, K Rose 1
PMCID: PMC1148687  PMID: 3277618

Abstract

We describe the isolation by reversed-phase h.p.l.c. of a number of products of the degradation of insulin by insulin proteinase and their direct analysis by fast atom bombardment mass spectrometry (f.a.b.-m.s.). Various semisynthetically labelled insulins were used, including [[2H2]GlyA1]insulin and [18O]LysB29]insulin. The results obtained confirm and extend the results obtained by non-mass-spectrometric methods [Davies, Muir, Rose & Offord (1988) Biochem. J. 249, 209-214, and papers cited therein]. Cleavage sites were identified between positions A13-A14, A14-A15, B9-B10, B13-B14, B24-B25 and B25-B26. The advantages and disadvantages of the application of f.a.b.-m.s. to such studies are discussed.

Full text

PDF
215

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Davies J. G., Muir A. V., Offord R. E. Identification of some cleavage sites of insulin by insulin proteinase. Biochem J. 1986 Dec 1;240(2):609–612. doi: 10.1042/bj2400609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davies J. G., Muir A. V., Rose K., Offord R. E. Identification of radioactive insulin fragments liberated by insulin proteinase during the degradation of semisynthetic [3H]GlyA1]insulin and [3H]PheB1]insulin. Biochem J. 1988 Jan 1;249(1):209–214. doi: 10.1042/bj2490209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davies J. G., Offord R. E. The preparation of tritiated insulin specifically labelled by semisynthesis at glycine-A1. Biochem J. 1985 Oct 15;231(2):389–392. doi: 10.1042/bj2310389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duckworth W. C., Stentz F. B., Heinemann M., Kitabchi A. E. Initial site of insulin cleavage by insulin protease. Proc Natl Acad Sci U S A. 1979 Feb;76(2):635–639. doi: 10.1073/pnas.76.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hamel F. G., Peavy D. E., Ryan M. P., Duckworth W. C. High performance liquid chromatographic analysis of insulin degradation by rat skeletal muscle insulin protease. Endocrinology. 1986 Jan;118(1):328–333. doi: 10.1210/endo-118-1-328. [DOI] [PubMed] [Google Scholar]
  6. Muir A., Offord R. E., Davies J. G. The identification of a major product of the degradation of insulin by 'insulin proteinase' (EC 3.4.22.11). Biochem J. 1986 Aug 1;237(3):631–637. doi: 10.1042/bj2370631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rose K., Gladstone J., Offord R. E. A mass-spectrometric investigation of the mechanism of the semisynthetic transformation of pig insulin into an ester of insulin of human sequence. Biochem J. 1984 May 15;220(1):189–196. doi: 10.1042/bj2200189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Varandani P. T., Shroyer L. A. Identification of an insulin fragment produced by an insulin degrading enzyme, neutral thiopeptidase. Mol Cell Endocrinol. 1987 Apr;50(3):171–175. doi: 10.1016/0303-7207(87)90014-1. [DOI] [PubMed] [Google Scholar]
  9. Williams D. H., Bradley C. V., Santikarn S., Bojesen G. Fast-atom-bombardment mass spectrometry. A new technique for the determination of molecular weights and amino acid sequences of peptides. Biochem J. 1982 Jan 1;201(1):105–117. doi: 10.1042/bj2010105. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES