Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jan 15;249(2):423–428. doi: 10.1042/bj2490423

Subcellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoo-pint) species.

A G Smith 1
PMCID: PMC1148720  PMID: 3277625

Abstract

The subcellular location of the two porphyrin-synthesis enzymes 5-aminolaevulinate dehydratase (ALAD) and porphobilinogen deaminase (PBGD) was investigated in Pisum sativum (pea) leaves and spadices of Arum (cuckoo-pint). Throughout the tissue-fractionation procedures the distribution of the two enzymes paralleled that of the plastid marker enzyme (ADP-glucose pyrophosphorylase), even in Arum, a tissue where the synthesis of non-plastid haem is predominant. The distribution of cytosolic marker enzyme (lactate dehydrogenase) was significantly different from that of ALAD and PBGD and, although purified mitochondria from both species had some residual activity, this was always less than contaminating plastid marker enzyme. The results suggest that ALAD and PBGD are exclusively plastid enzymes. The significance of this for the role of plastids in cellular porphyrin synthesis is discussed.

Full text

PDF
423

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Castelfranco P. A., Jones O. T. Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol. 1975 Mar;55(3):485–490. doi: 10.1104/pp.55.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chua N. H., Schmidt G. W. Transport of proteins into mitochondria and chloroplasts. J Cell Biol. 1979 Jun;81(3):461–483. doi: 10.1083/jcb.81.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies D. D., Davies S. Purification and properties of L(+)-lactate dehydrogenase from potato tubers. Biochem J. 1972 Oct;129(4):831–839. doi: 10.1042/bj1290831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hsu W. P., Miller G. W. Coproporphyrinogenase in tobacco (Nicotiana tabacum L.). Biochem J. 1970 Apr;117(2):215–220. doi: 10.1042/bj1170215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jacobs J. M., Jacobs N. J. Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Purification and partial characterization of the enzyme from barley organelles. Biochem J. 1987 May 15;244(1):219–224. doi: 10.1042/bj2440219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Little H. N., Jones O. T. The subcellular loclization and properties of the ferrochelatase of etiolated barley. Biochem J. 1976 May 15;156(2):309–314. doi: 10.1042/bj1560309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nandi D. L., Waygood E. R. Biosynthesis of porphyrins in wheat leaves. II. 5-aminolaevulinate hydro-lyase. Can J Biochem. 1967 Feb;45(2):327–336. doi: 10.1139/o67-036. [DOI] [PubMed] [Google Scholar]
  9. Nash D., Wiskich J. T. Properties of substantially chlorophyll-free pea leaf mitochondria prepared by sucrose density gradient separation. Plant Physiol. 1983 Mar;71(3):627–634. doi: 10.1104/pp.71.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ap Rees T., Bryce J. H., Wilson P. M., Green J. H. Role and location of NAD malic enzyme in thermogenic tissues of Araceae. Arch Biochem Biophys. 1983 Dec;227(2):511–521. doi: 10.1016/0003-9861(83)90480-0. [DOI] [PubMed] [Google Scholar]
  11. von Heijne G. Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO J. 1984 Oct;3(10):2315–2318. doi: 10.1002/j.1460-2075.1984.tb02132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES