Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jan 15;249(2):513–519. doi: 10.1042/bj2490513

Sodium valproate inhibits the movement of secretory vesicles in rat hepatocytes.

M E Bellringer 1, K Rahman 1, R Coleman 1
PMCID: PMC1148732  PMID: 3124828

Abstract

Sodium valproate (VPA), a simple 8-carbon branched chain fatty acid, is an effective anti-epileptic drug with an occasional serious side effect of liver damage, including the accumulation of triacylglycerols within hepatocytes, and reductions in serum protein concentrations. By investigating the effects of VPA, using biliary fistula rats and isolated perfused rat livers, we have shown that secretion of triacylglycerols and rat serum albumin at the sinusoidal pole of hepatocytes, and of phospholipids, lysosomal contents, and IgA at their biliary pole, are all reduced, to somewhat different extents, by acute VPA administration. In addition, the vesicular transcytosis of exogenous protein (i.e. bovine serum albumin) from the perfusion fluid into bile is also decreased by VPA administration. To determine whether the phenomena were specific to VPA, a control series of experiments was also performed using octanoate (a straight-chain analogue of VPA). With the biliary fistula rats, octanoate did not show inhibition of secretion as compared with the saline controls; with the isolated perfused livers, however, octanoate did show such an inhibition. These phenomena suggest that VPA inhibition of secretion may be a factor in its hepatotoxicity, as the effects are apparent in both the whole animal and the isolated perfused liver, whereas octanoate is not hepatotoxic in the whole animal. Since when octanoate is administered to the isolated liver it causes an inhibition in secretion similar to that caused by VPA, it may be that the large dose of this compound reaching the liver affects a key step in liver metabolism or vesicle transport under these circumstances. Since octanoate does not normally reach the liver in such amounts, as it will normally be metabolized by other tissues, it is not hepatotoxic in the whole animal as is VPA.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Barnwell S. G., Coleman R. Abnormal secretion of proteins into bile from colchicine-treated isolated perfused rat livers. Biochem J. 1983 Nov 15;216(2):409–414. doi: 10.1042/bj2160409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnwell S. G., Lowe P. J., Coleman R. The effects of colchicine on secretion into bile of bile salts, phospholipids, cholesterol and plasma membrane enzymes: bile salts are secreted unaccompanied by phospholipids and cholesterol. Biochem J. 1984 Jun 15;220(3):723–731. doi: 10.1042/bj2200723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bergmeyer H. U., Scheibe P., Wahlefeld A. W. Optimization of methods for aspartate aminotransferase and alanine aminotransferase. Clin Chem. 1978 Jan;24(1):58–73. [PubMed] [Google Scholar]
  6. Bernuau J., Degott C., Nouel O., Rueff B., Benhamou J. P. Non-fatal acute fatty liver of pregnancy. Gut. 1983 Apr;24(4):340–344. doi: 10.1136/gut.24.4.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown N. A., Farmer P. B., Coakley M. Valproic acid teratogenicity: demonstration that the biochemical mechanism differs from that of valproate hepatotoxicity. Biochem Soc Trans. 1985 Feb;13(1):75–77. doi: 10.1042/bst0130075. [DOI] [PubMed] [Google Scholar]
  8. Chapman A., Keane P. E., Meldrum B. S., Simiand J., Vernieres J. C. Mechanism of anticonvulsant action of valproate. Prog Neurobiol. 1982;19(4):315–359. doi: 10.1016/0301-0082(82)90010-7. [DOI] [PubMed] [Google Scholar]
  9. Coleman R., Iqbal S., Godfrey P. P., Billington D. Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties. Biochem J. 1979 Jan 15;178(1):201–208. doi: 10.1042/bj1780201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dale B. M., Purdie G. H., Rischbieth R. H. Fibrinogen depletion with sodium valproate. Lancet. 1978 Jun 17;1(8077):1316–1317. doi: 10.1016/s0140-6736(78)91308-9. [DOI] [PubMed] [Google Scholar]
  11. Gram L., Bentsen K. Valproic acid and liver damage. Acta Paediatr Scand. 1985 Sep;74(5):796–798. doi: 10.1111/j.1651-2227.1985.tb10035.x. [DOI] [PubMed] [Google Scholar]
  12. HUEBSCHER G., WEST G. R. SPECIFIC ASSAYS OF SOME PHOSPHATASES IN SUBCELLULAR FRACTIONS OF SMALL INTESTINAL MUCOSA. Nature. 1965 Feb 20;205:799–800. doi: 10.1038/205799a0. [DOI] [PubMed] [Google Scholar]
  13. Hayasaka K., Takahashi I., Kobayashi Y., Iinuma K., Narisawa K., Tada K. Effects of valproate on biogenesis and function of liver mitochondria. Neurology. 1986 Mar;36(3):351–356. doi: 10.1212/wnl.36.3.351. [DOI] [PubMed] [Google Scholar]
  14. Isom J. B. On the toxicity of valproic acid. Am J Dis Child. 1984 Oct;138(10):901–903. [PubMed] [Google Scholar]
  15. Jezequel A. M., Bonazzi P., Novelli G., Venturini C., Orlandi F. Early structural and functional changes in liver of rats treated with a single dose of valproic acid. Hepatology. 1984 Nov-Dec;4(6):1159–1166. doi: 10.1002/hep.1840040611. [DOI] [PubMed] [Google Scholar]
  16. Kesterson J. W., Granneman G. R., Machinist J. M. The hepatotoxicity of valproic acid and its metabolites in rats. I. Toxicologic, biochemical and histopathologic studies. Hepatology. 1984 Nov-Dec;4(6):1143–1152. doi: 10.1002/hep.1840040609. [DOI] [PubMed] [Google Scholar]
  17. Kloppel T. M., Brown W. R., Reichen J. Mechanisms of secretion of proteins into bile: studies in the perfused rat liver. Hepatology. 1986 Jul-Aug;6(4):587–594. doi: 10.1002/hep.1840060407. [DOI] [PubMed] [Google Scholar]
  18. Le Marchand Y., Singh A., Assimacopoulos-Jeannet F., Orci L., Rouiller C., Jeanrenaud B. A role for the microtubular system in the release of very low density lipoproteins by perfused mouse livers. J Biol Chem. 1973 Oct 10;248(19):6862–6870. [PubMed] [Google Scholar]
  19. Lewis J. H., Zimmerman H. J., Garrett C. T., Rosenberg E. Valproate-induced hepatic steatogenesis in rats. Hepatology. 1982 Nov-Dec;2(6):870–873. doi: 10.1002/hep.1840020622. [DOI] [PubMed] [Google Scholar]
  20. Lowe P. J., Barnwell S. G., Coleman R. Rapid kinetic analysis of the bile-salt-dependent secretion of phospholipid, cholesterol and a plasma-membrane enzyme into bile. Biochem J. 1984 Sep 15;222(3):631–637. doi: 10.1042/bj2220631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lowe P. J., Kan K. S., Barnwell S. G., Sharma R. K., Coleman R. Transcytosis and paracellular movements of horseradish peroxidase across liver parenchymal tissue from blood to bile. Effects of alpha-naphthylisothiocyanate and colchicine. Biochem J. 1985 Jul 15;229(2):529–537. doi: 10.1042/bj2290529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  23. Mullock B. M., Shaw L. J., Fitzharris B., Peppard J., Hamilton M. J., Simpson M. T., Hunt T. M., Hinton R. H. Sources of proteins in human bile. Gut. 1985 May;26(5):500–509. doi: 10.1136/gut.26.5.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nutt J. G., Neophytides A. N., Lodish J. R. Lowered erythrocyte-sedimentation rate with sodium valproate. Lancet. 1978 Sep 16;2(8090):636–636. doi: 10.1016/s0140-6736(78)92864-7. [DOI] [PubMed] [Google Scholar]
  25. Olson M. J., Handler J. A., Thurman R. G. Mechanism of zone-specific hepatic steatosis caused by valproate: inhibition of ketogenesis in periportal regions of the liver lobule. Mol Pharmacol. 1986 Dec;30(6):520–525. [PubMed] [Google Scholar]
  26. Orci L., Le Marchand Y., Singh A., Assimacopoulos-Jeannet F., Rouiller C., Jeanrenaud B. Letter: Role of microtubules in lipoprotein secretion by the liver. Nature. 1973 Jul 6;244(5410):30–32. doi: 10.1038/244030a0. [DOI] [PubMed] [Google Scholar]
  27. Powell-Jackson P. R., Tredger J. M., Williams R. Hepatotoxicity to sodium valproate: a review. Gut. 1984 Jun;25(6):673–681. doi: 10.1136/gut.25.6.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rahman K., Coleman R. Selective biliary lipid secretion at low bile-salt-output rates in the isolated perfused rat liver. Effects of phalloidin. Biochem J. 1986 Jul 1;237(1):301–304. doi: 10.1042/bj2370301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rumbach L., Mutet C., Cremel G., Marescaux C. A., Micheletti G., Warter J. M., Waksman A. Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies. Mol Pharmacol. 1986 Sep;30(3):270–273. [PubMed] [Google Scholar]
  30. Rumbach L., Warter J. M., Rendon A., Marescaux C., Micheletti G., Waksman A. Inhibition of oxidative phosphorylation in hepatic and cerebral mitochondria of sodium valproate-treated rats. J Neurol Sci. 1983 Oct-Nov;61(3):417–423. doi: 10.1016/0022-510x(83)90174-0. [DOI] [PubMed] [Google Scholar]
  31. Ryle P. R., Chakraborty J., Thomson A. D. The effect of methylene blue on the hepatocellular redox state and liver lipid content during chronic ethanol feeding in the rat. Biochem J. 1985 Dec 15;232(3):877–882. doi: 10.1042/bj2320877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schaffner F., Thaler H. Nonalcoholic fatty liver disease. Prog Liver Dis. 1986;8:283–298. [PubMed] [Google Scholar]
  33. Sherlock S. Acute fatty liver of pregnancy and the microvesicular fat diseases. Gut. 1983 Apr;24(4):265–269. doi: 10.1136/gut.24.4.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Suchy F. J., Balistreri W. F., Buchino J. J., Sondheimer J. M., Bates S. R., Kearns G. L., Stull J. D., Bove K. E. Acute hepatic failure associated with the use of sodium valproate. N Engl J Med. 1979 Apr 26;300(17):962–966. doi: 10.1056/NEJM197904263001706. [DOI] [PubMed] [Google Scholar]
  35. Tsukamoto H., French S. W., Benson N., Delgado G., Rao G. A., Larkin E. C., Largman C. Severe and progressive steatosis and focal necrosis in rat liver induced by continuous intragastric infusion of ethanol and low fat diet. Hepatology. 1985 Mar-Apr;5(2):224–232. doi: 10.1002/hep.1840050212. [DOI] [PubMed] [Google Scholar]
  36. Watkins J. B., Klaassen C. D. Effect of inducers and inhibitors of glucuronidation on the biliary excretion and choleretic action of valproic acid in the rat. J Pharmacol Exp Ther. 1982 Feb;220(2):305–310. [PubMed] [Google Scholar]
  37. Weisiger R., Gollan J., Ockner R. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science. 1981 Mar 6;211(4486):1048–1051. doi: 10.1126/science.6258226. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES