Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jan 15;249(2):609–612. doi: 10.1042/bj2490609

Effect of hyperoxic exposure on protein synthesis in the rat.

F J Kelly 1
PMCID: PMC1148745  PMID: 2449180

Abstract

Rates of protein synthesis were measured in vivo [corrected] in the lung and heart from fed rats exposed to hyperoxia (less than or equal to 95% O2) for either 6 or 24 h. Protein synthesis rates were depressed by 16-32% compared with normoxic controls in these tissues. The inhibition in both tissues was greatest after 24 h hyperoxic exposure. The decreased fractional rates of synthesis in both tissues were related to changes in ribosomal activity rather than capacity. The fall in synthesis rate per ribosome was greatest in both tissues when the exposure period was increased to 24 h. The possible mechanism(s) involved in hyperoxia-induced depression of protein synthesis are discussed.

Full text

PDF
609

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almiş-Kanigür G., Kan B., Kospançali S., Bermek E. A translational inhibitor activated in rabbit reticulocyte lysates under high pO2. FEBS Lett. 1982 Aug 16;145(1):143–146. doi: 10.1016/0014-5793(82)81223-4. [DOI] [PubMed] [Google Scholar]
  2. BROSEMER R. W., RUTTER W. J. The effect of oxygen tension on the growth and metabolism of a mammalian cell. Exp Cell Res. 1961 Oct;25:101–113. doi: 10.1016/0014-4827(61)90311-1. [DOI] [PubMed] [Google Scholar]
  3. Balin A. K., Goodman B. P., Rasmussen H., Cristofalo V. J. The effect of oxygen tension on the growth and metabolism of WI-38 cells. J Cell Physiol. 1976 Oct;89(2):235–249. doi: 10.1002/jcp.1040890207. [DOI] [PubMed] [Google Scholar]
  4. FLECK A., MUNRO H. N. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim Biophys Acta. 1962 May 14;55:571–583. doi: 10.1016/0006-3002(62)90836-3. [DOI] [PubMed] [Google Scholar]
  5. Gacad G., Massaro D. Hyperoxia: influence on lung mechanics and protein synthesis. J Clin Invest. 1973 Mar;52(3):559–565. doi: 10.1172/JCI107216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Garlick P. J., McNurlan M. A., Preedy V. R. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J. 1980 Nov 15;192(2):719–723. doi: 10.1042/bj1920719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garlick P. J., Millward D. J., James W. P., Waterlow J. C. The effect of protein deprivation and starvation on the rate of protein synthesis in tissues of the rat. Biochim Biophys Acta. 1975 Nov 18;414(1):71–84. doi: 10.1016/0005-2787(75)90126-4. [DOI] [PubMed] [Google Scholar]
  8. Goetz I. E. Oxygen toxicity in normal and neoplastic hamster cells in culture. In Vitro. 1975 Nov-Dec;11(6):382–394. doi: 10.1007/BF02616375. [DOI] [PubMed] [Google Scholar]
  9. Goldspink D. F., Lewis S. E., Kelly F. J. Protein synthesis during the developmental growth of the small and large intestine of the rat. Biochem J. 1984 Jan 15;217(2):527–534. doi: 10.1042/bj2170527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grave G. D., Kennedy C., Sokoloff L. Impairment of growth and development of the rat brain by hyperoxia at atmospheric pressure. J Neurochem. 1972 Jan;19(1):187–194. doi: 10.1111/j.1471-4159.1972.tb01268.x. [DOI] [PubMed] [Google Scholar]
  11. Haugaard N. Cellular mechanisms of oxygen toxicity. Physiol Rev. 1968 Apr;48(2):311–373. doi: 10.1152/physrev.1968.48.2.311. [DOI] [PubMed] [Google Scholar]
  12. Henshaw E. C., Hirsch C. A., Morton B. E., Hiatt H. H. Control of protein synthesis in mammalian tissues through changes in ribosome activity. J Biol Chem. 1971 Jan 25;246(2):436–446. [PubMed] [Google Scholar]
  13. Hollenberg M. Effect of oxygen on growth of cultured myocardial cells. Circ Res. 1971 Feb;28(2):148–157. doi: 10.1161/01.res.28.2.148. [DOI] [PubMed] [Google Scholar]
  14. JAMIESON D., LADNER K., VANDENBRENK H. A. PULMONARY DAMAGE DUE TO HIGH PRESSURE OXYGEN BREATHING IN RATS. 4. QUANTITATIVE ANALYSIS OF SULPHYDRYL AND DISULPHIDE GROUPS IN RAT LUNGS. Aust J Exp Biol Med Sci. 1963 Oct;41:491–497. doi: 10.1038/icb.1963.38. [DOI] [PubMed] [Google Scholar]
  15. Kanigür G., Kan B., Tiryaki D., Bermek E. High pO2-activated inhibitor of protein synthesis in rabbit reticulocytes: its relationship to glutathione disulfide-induced inhibitor and to a approximately 23,000-Mr sulfhydryl protein. Biochem Biophys Res Commun. 1983 Nov 30;117(1):135–140. doi: 10.1016/0006-291x(83)91551-6. [DOI] [PubMed] [Google Scholar]
  16. Kelly F. J., Lewis S. E., Anderson P., Goldspink D. F. Pre- and postnatal growth and protein turnover in four muscles of the rat. Muscle Nerve. 1984 Mar-Apr;7(3):235–242. doi: 10.1002/mus.880070309. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Massaro D. Hyperoxia: influences of food deprivation on protein synthesis by lung. Proc Soc Exp Biol Med. 1973 Jul;143(3):602–603. doi: 10.3181/00379727-143-37375. [DOI] [PubMed] [Google Scholar]
  19. McNurlan M. A., Tomkins A. M., Garlick P. J. The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochem J. 1979 Feb 15;178(2):373–379. doi: 10.1042/bj1780373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Northway W. H., Jr, Petriceks R., Shahinian L. Quantitative aspects of oxygen toxicity in the newborn: inhibition of lung DNA synthesis in the mouse. Pediatrics. 1972 Jul;50(1):67–72. [PubMed] [Google Scholar]
  21. Northway W. H., Jr, Rezeau L., Petriceks R., Bensch K. G. Oxygen toxicity in the newborn lung: reversal of inhibition of DNA synthesis in the mouse. Pediatrics. 1976 Jan;57(1):41–46. [PubMed] [Google Scholar]
  22. RUECKERT R. R., MUELLER G. C. Effect of oxygen tension on HeLa cell growth. Cancer Res. 1960 Jul;20:944–949. [PubMed] [Google Scholar]
  23. Smith J. L. The pathological effects due to increase of oxygen tension in the air breathed. J Physiol. 1899 Mar 22;24(1):19–35. doi: 10.1113/jphysiol.1899.sp000746. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES