Abstract
The effects of [leucine]enkephalin and angiotensin on hepatic carbohydrate and cyclic nucleotide metabolism are compared. Both peptides stimulated glycogenolysis as a result of an increase in phosphorylase a activity and enhanced glucose synthesis from [2-14C]pyruvate, although neither had any significant effect on pyruvate kinase activity. Although the magnitudes of the effects of both peptides on glycogenolysis were comparable and unaffected by the presence of insulin. [Leu]enkephalin proved to be more efficacious in enhancing gluconeogenesis, the response being comparable with that to glucagon. Both effectors decreased the intracellular concentration of cyclic AMP in hepatocytes when incubated under control conditions and after addition of sub-optimal concentrations of glucagon. This was correlated with the ability of the two peptides to inhibit both basal and hormone-stimulated adenylate cyclase activity in purified liver plasma membranes.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan E. H., Green I. C., Titheradge M. A. The stimulation of glycogenolysis and gluconeogenesis in isolated hepatocytes by opioid peptides. Biochem J. 1983 Nov 15;216(2):507–510. doi: 10.1042/bj2160507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baptiste E. J., Rizack M. A. In vitro cyclic AMP-mediated lipolytic activity of endorphins, enkephalins and naloxone. Life Sci. 1980 Jul 14;27(2):135–141. doi: 10.1016/0024-3205(80)90455-5. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binet A., Berthon B., Claret M. Hormone-induced increase in free cytosolic calcium and glycogen phosphorylase activation in rat hepatocytes incubated in normal and low-calcium media. Biochem J. 1985 Jun 15;228(3):565–574. doi: 10.1042/bj2280565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackmore P. F., Assimacopoulos-Jeannet F., Chan T. M., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Insulin inhibition of alpha-adrenergic and glucagon actions in normal and calcium-depleted hepatocytes. J Biol Chem. 1979 Apr 25;254(8):2828–2834. [PubMed] [Google Scholar]
- Blair J. B., Cimbala M. A., Foster J. L., Morgan R. A. Hepatic pyruvate kinase. Regulation by glucagon, cyclic adenosine 3'-5'-monophosphate, and insulin in the perfused rat liver. J Biol Chem. 1976 Jun 25;251(12):3756–3762. [PubMed] [Google Scholar]
- Blume A. J., Boone G., Lichtshtein D. Regulation of the neuroblastoma x glioma hybrid opiate receptors by Na+ and guanine nucleotides. Adv Exp Med Biol. 1979;116:163–174. doi: 10.1007/978-1-4684-3503-0_9. [DOI] [PubMed] [Google Scholar]
- Brooker G., Harper J. F., Terasaki W. L., Moylan R. D. Radioimmunoassay of cyclic AMP and cyclic GMP. Adv Cyclic Nucleotide Res. 1979;10:1–33. [PubMed] [Google Scholar]
- Campanile C. P., Crane J. K., Peach M. J., Garrison J. C. The hepatic angiotensin II receptor. I. Characterization of the membrane-binding site and correlation with physiological response in hepatocytes. J Biol Chem. 1982 May 10;257(9):4951–4958. [PubMed] [Google Scholar]
- Cantau B., Keppens S., De Wulf H., Jard S. (3H)-vasopressin binding to isolated rat hepatocytes and liver membranes: regulation by GTP and relation to glycogen phosphorylase activation. J Recept Res. 1980;1(2):137–168. doi: 10.3109/10799898009044096. [DOI] [PubMed] [Google Scholar]
- Chan T. M., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. J Biol Chem. 1978 Sep 25;253(18):6393–6400. [PubMed] [Google Scholar]
- Charest R., Prpić V., Exton J. H., Blackmore P. F. Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline and angiotensin II and its relationship to changes in cytosolic free Ca2+. Biochem J. 1985 Apr 1;227(1):79–90. doi: 10.1042/bj2270079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark M. J., Levenson S. D., Medzihradsky F. Evidence for coupling of the kappa opioid receptor to brain GTPase. Life Sci. 1986 Nov 10;39(19):1721–1727. doi: 10.1016/0024-3205(86)90090-1. [DOI] [PubMed] [Google Scholar]
- Claus T. H., El-Maghrabi M. R., Pilkis S. J. Modulation of the phosphorylation state of rat liver pyruvate kinase by allosteric effectors and insulin. J Biol Chem. 1979 Aug 25;254(16):7855–7864. [PubMed] [Google Scholar]
- Cooper D. M., Londos C., Gill D. L., Rodbell M. Opiate receptor-mediated inhibition of adenylate cyclase in rat striatal plasma membranes. J Neurochem. 1982 Apr;38(4):1164–1167. doi: 10.1111/j.1471-4159.1982.tb05365.x. [DOI] [PubMed] [Google Scholar]
- Crane J. K., Campanile C. P., Garrison J. C. The hepatic angiotensin II receptor. II. Effect of guanine nucleotides and interaction with cyclic AMP production. J Biol Chem. 1982 May 10;257(9):4959–4965. [PubMed] [Google Scholar]
- Creba J. A., Downes C. P., Hawkins P. T., Brewster G., Michell R. H., Kirk C. J. Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones. Biochem J. 1983 Jun 15;212(3):733–747. doi: 10.1042/bj2120733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cárdenas-Tanús R. J., Huerta-Bahena J., García-Sáinz J. A. Angiotensin II inhibits the accumulation of cyclic AMP produced by glucagon but not its metabolic effects. FEBS Lett. 1982 Jun 21;143(1):1–4. doi: 10.1016/0014-5793(82)80259-7. [DOI] [PubMed] [Google Scholar]
- Dave J. R., Rubinstein N., Eskay R. L. Evidence that beta-endorphin binds to specific receptors in rat peripheral tissues and stimulates the adenylate cyclase-adenosine 3',5'-monophosphate system. Endocrinology. 1985 Oct;117(4):1389–1396. doi: 10.1210/endo-117-4-1389. [DOI] [PubMed] [Google Scholar]
- Dehaye J. P., Hughes B. P., Blackmore P. F., Exton J. H. Insulin inhibition of alpha-adrenergic actions in liver. Biochem J. 1981 Mar 15;194(3):949–956. doi: 10.1042/bj1940949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frederickson R. C., Geary L. E. Endogenous opioid peptides: review of physiological, pharmacological and clinical aspects. Prog Neurobiol. 1982;19(1-2):19–69. doi: 10.1016/0301-0082(82)90020-x. [DOI] [PubMed] [Google Scholar]
- Garrison J. C., Borland M. K., Florio V. A., Twible D. A. The role of calcium ion as a mediator of the effects of angiotensin II, catecholamines, and vasopressin on the phosphorylation and activity of enzymes in isolated hepatocytes. J Biol Chem. 1979 Aug 10;254(15):7147–7156. [PubMed] [Google Scholar]
- Garrison J. C., Borland M. K. Regulation of mitochondrial pyruvate carboxylation and gluconeogenesis in rat hepatocytes via an alpha-adrenergic, adenosine 3':5'-monophosphate-independent mechanism. J Biol Chem. 1979 Feb 25;254(4):1129–1133. [PubMed] [Google Scholar]
- Green I. C., Perrin D., Penman E., Yaseen A., Ray K., Howell S. L. Effect of dynorphin on insulin and somatostatin secretion, calcium uptake, and c-AMP levels in isolated rat islets of Langerhans. Diabetes. 1983 Aug;32(8):685–690. doi: 10.2337/diab.32.8.685. [DOI] [PubMed] [Google Scholar]
- Green I. C., Ray K., Perrin D. Opioid peptide effects on insulin release and c-AMP in islets of Langerhans. Horm Metab Res. 1983 Mar;15(3):124–128. doi: 10.1055/s-2007-1018648. [DOI] [PubMed] [Google Scholar]
- Gunther S. Characterization of angiotensin II receptor subtypes in rat liver. J Biol Chem. 1984 Jun 25;259(12):7622–7629. [PubMed] [Google Scholar]
- Hems D. A., Rodrigues L. M., Whitton P. D. Rapid stimulation by vasopressin, oxytocin and angiotensin II of glycogen degradation in hepatocyte suspensions. Biochem J. 1978 May 15;172(2):311–317. doi: 10.1042/bj1720311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hue L., Blackmore P. F., Exton J. H. Fructose 2,6-bisphosphate. Hormonal regulation and mechanism of its formation in liver. J Biol Chem. 1981 Sep 10;256(17):8900–8903. [PubMed] [Google Scholar]
- Hue L., Felíu J. E., Hers H. G. Control of gluconeogenesis and of enzymes of glycogen metabolism in isolated rat hepatocytes. A parallel study of the effect of phenylephrine and of glucagon. Biochem J. 1978 Dec 15;176(3):791–797. doi: 10.1042/bj1760791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hue L., Van Schaftingen E., Blackmore P. F. Stimulation of glycolysis and accumulation of a stimulator of phosphofructokinase in hepatocytes incubated with vasopressin. Biochem J. 1981 Mar 15;194(3):1023–1026. doi: 10.1042/bj1941023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ipp E., Dhorajiwala J., Pugh W., Moossa A. R., Rubenstein A. H. Effects of an enkephalin analog on pancreatic endocrine function and glucose homeostasis in normal and diabetic dogs. Endocrinology. 1982 Dec;111(6):2110–2116. doi: 10.1210/endo-111-6-2110. [DOI] [PubMed] [Google Scholar]
- Jard S., Cantau B., Jakobs K. H. Angiotensin II and alpha-adrenergic agonists inhibit rat liver adenylate cyclase. J Biol Chem. 1981 Mar 25;256(6):2603–2606. [PubMed] [Google Scholar]
- Keppens S., De Wulf H. Vasopressin and angiotensin control the activity of liver phosphodiesterase. Biochem J. 1984 Aug 15;222(1):277–280. doi: 10.1042/bj2220277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirk C. J., Michell R. H., Hems D. A. Phosphatidylinositol metabolism in rat hepatocytes stimulated by vasopressin. Biochem J. 1981 Jan 15;194(1):155–165. doi: 10.1042/bj1940155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleineke J., Söling H. D. The Ca2+-dependent actions of the alpha-adrenergic agonist phenylephrine on hepatic glycogenolysis differ from those of vasopressin and angiotensin. Eur J Biochem. 1987 Jan 2;162(1):143–150. doi: 10.1111/j.1432-1033.1987.tb10554.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leach R. P., Allan E. H., Titheradge M. A. The stimulation of glycogenolysis in isolated hepatocytes by opioid peptides. Biochem J. 1985 Apr 1;227(1):191–197. doi: 10.1042/bj2270191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leach R. P., Shears S. B., Kirk C. J., Titheradge M. A. Changes in free cytosolic calcium and accumulation of inositol phosphates in isolated hepatocytes by [Leu]enkephalin. Biochem J. 1986 Sep 1;238(2):537–542. doi: 10.1042/bj2380537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leach R. P., Titheradge M. A. The stimulation of glycogenolysis in isolated hepatocytes by opioid peptides. Biochem J. 1986 Sep 1;238(2):531–535. doi: 10.1042/bj2380531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch C. J., Blackmore P. F., Charest R., Exton J. H. The relationships between receptor binding capacity for norepinephrine, angiotensin II, and vasopressin and release of inositol trisphosphate, Ca2+ mobilization, and phosphorylase activation in rat liver. Mol Pharmacol. 1985 Aug;28(2):93–99. [PubMed] [Google Scholar]
- López-Ruiz M. P., Arilla E., Gómez-Pan A., Prieto J. C. Interaction of Leu-enkephalin with isolated enterocytes from guinea pig: binding to specific receptors and stimulation of cAMP accumulation. Biochem Biophys Res Commun. 1985 Jan 16;126(1):404–411. doi: 10.1016/0006-291x(85)90620-5. [DOI] [PubMed] [Google Scholar]
- Massagué J., Guinovart J. J. Insulin counteraction of alpha-adrenergic effects on liver glycogen metabolism. Biochim Biophys Acta. 1978 Oct 3;543(2):269–272. doi: 10.1016/0304-4165(78)90073-9. [DOI] [PubMed] [Google Scholar]
- Matsumura M., Fukushima T., Saito H., Saito S. In vivo and in vitro effects of beta-endorphin on glucose metabolism in the rat. Horm Metab Res. 1984 Jan;16(1):27–31. doi: 10.1055/s-2007-1014686. [DOI] [PubMed] [Google Scholar]
- Mine T., Kojima I., Kimura S., Ogata E. Comparison of the changes in cytoplasmic free calcium concentration induced by phenylephrine, vasopressin and angiotensin II in hepatocytes. Biochem Biophys Res Commun. 1986 Oct 15;140(1):107–113. doi: 10.1016/0006-291x(86)91064-8. [DOI] [PubMed] [Google Scholar]
- Minneman K. P., Iversen I. L. Enkephalin and opiate narcotics increase cyclic GMP accumulation in slices of rat neostriatum. Nature. 1976 Jul 22;262(5566):313–314. doi: 10.1038/262313a0. [DOI] [PubMed] [Google Scholar]
- Morgan N. G., Exton J. H., Blackmore P. F. Angiotensin II inhibits hepatic cAMP accumulation induced by glucagon and epinephrine and their metabolic effects. FEBS Lett. 1983 Mar 7;153(1):77–80. doi: 10.1016/0014-5793(83)80122-7. [DOI] [PubMed] [Google Scholar]
- Pobiner B. F., Hewlett E. L., Garrison J. C. Role of Ni in coupling angiotensin receptors to inhibition of adenylate cyclase in hepatocytes. J Biol Chem. 1985 Dec 25;260(30):16200–16209. [PubMed] [Google Scholar]
- Rognstad R., Katz J. Role of pyruvate kinase in the regulation of gluconeogenesis from L-lactate. J Biol Chem. 1977 Mar 25;252(6):1831–1833. [PubMed] [Google Scholar]
- Salomon Y. Adenylate cyclase assay. Adv Cyclic Nucleotide Res. 1979;10:35–55. [PubMed] [Google Scholar]
- Sharma S. K., Nirenberg M., Klee W. A. Morphine receptors as regulators of adenylate cyclase activity. Proc Natl Acad Sci U S A. 1975 Feb;72(2):590–594. doi: 10.1073/pnas.72.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strickland W. G., Blackmore P. F., Exton J. H. The role of calcium in alpha-adrenergic inactivation of glycogen synthase in rat hepatocytes and its inhibition by insulin. Diabetes. 1980 Aug;29(8):617–622. doi: 10.2337/diab.29.8.617. [DOI] [PubMed] [Google Scholar]
- Thomas A. P., Alexander J., Williamson J. R. Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes. J Biol Chem. 1984 May 10;259(9):5574–5584. [PubMed] [Google Scholar]
- Thomas A. P., Williamson J. R. Effects of insulin on phenylephrine-induced activation of phosphorylase and phosphatidylinositol turnover in isolated hepatocytes. J Biol Chem. 1983 Feb 10;258(3):1411–1414. [PubMed] [Google Scholar]
- Whitton P. D., Rodrigues L. M., Hems D. A. Stimulation by vasopressin, angiotensin and oxytocin of gluconeogenesis in hepatocyte suspensions. Biochem J. 1978 Dec 15;176(3):893–898. doi: 10.1042/bj1760893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wollemann M., Szebeni A., Bajusz S., Gráf L. Effect of Met-enkephalin and (D-Met2,Pro5)-enkephalinamide on the adenylate cyclase activity of rat brain. Neurochem Res. 1979 Oct;4(5):627–631. doi: 10.1007/BF00964439. [DOI] [PubMed] [Google Scholar]
- Wong S. C., Yeung Y. G., Yeung D. Acute and chronic effects of morphine on lipolysis in rat epididymal fat pads. Biochem Pharmacol. 1977 Jan 15;26(2):143–147. doi: 10.1016/0006-2952(77)90387-2. [DOI] [PubMed] [Google Scholar]
- Wong S. C., Yeung Y. G., Yeung D. Effects of morphine on isoenzymes of pyruvate kinase and tyrosine aminotransferase in rat. Biochem Pharmacol. 1978 May 1;27(9):1347–1351. doi: 10.1016/0006-2952(78)90118-1. [DOI] [PubMed] [Google Scholar]