Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Feb 1;249(3):745–751. doi: 10.1042/bj2490745

The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane.

M J Dilworth 1, R R Eady 1, M E Eldridge 1
PMCID: PMC1148769  PMID: 3162672

Abstract

1. The vanadium (V-) nitrogenase of Azobacter chroococcum transfers up to 7.4% of the electrons used in acetylene (C2H2) reduction for the formation of ethane (C2H6). The apparent Km for C2H2 (6 kPa) is the same for either ethylene (C2H4) or ethane (C2H6) formation and much higher than the reported Km values for C2H2 reduction to C2H4 by molybdenum (Mo-) nitrogenases. Reduction of C2H2 in 2H2O yields predominantly [cis-2H2]ethylene. 2. The ratio of electron flux yielding C2H6 to that yielding C2H4 (the C2H6/C2H4 ratio) is increased by raising the ratio of Fe protein to VFe protein and by increasing the assay temperature up to at least 40 degrees C. pH values above 7.5 decrease the C2H6/C2H4 ratio. 3. C2H4 and C2H6 formation from C2H2 by V-nitrogenase are not inhibited by H2. CO inhibits both processes much less strongly than it inhibits C2H4 formation from C2H2 with Mo-nitrogenase. 4. Although V-nitrogenase also catalyses the slow CO-sensitive reduction of C2H4 to C2H6, free C2H4 is not an intermediate in C2H6 formation from C2H2. 5. Propyne (CH3C identical to CH) is not reduced by the V-nitrogenase. 6. Some implications of these results for the mechanism of C2H6 formation by the V-nitrogenase are discussed.

Full text

PDF
745

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby G. A., Dilworth M. J., Thorneley R. N. Klebsiella pneumoniae nitrogenase. Inhibition of hydrogen evolution by ethylene and the reduction of ethylene to ethane. Biochem J. 1987 Nov 1;247(3):547–554. doi: 10.1042/bj2470547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop P. E., Premakumar R., Dean D. R., Jacobson M. R., Chisnell J. R., Rizzo T. M., Kopczynski J. Nitrogen Fixation by Azotobacter vinelandii Strains Having Deletions in Structural Genes for Nitrogenase. Science. 1986 Apr 4;232(4746):92–94. doi: 10.1126/science.232.4746.92. [DOI] [PubMed] [Google Scholar]
  3. Dilworth M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta. 1966 Oct 31;127(2):285–294. doi: 10.1016/0304-4165(66)90383-7. [DOI] [PubMed] [Google Scholar]
  4. Dilworth M. J., Thorneley R. N. Nitrogenase of Klebsiella pneumoniae. Hydrazine is a product of azide reduction. Biochem J. 1981 Mar 1;193(3):971–983. doi: 10.1042/bj1930971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eady R. R., Robson R. L., Richardson T. H., Miller R. W., Hawkins M. The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the VFe protein. Biochem J. 1987 May 15;244(1):197–207. doi: 10.1042/bj2440197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eady R. R., Smith B. E., Cook K. A., Postgate J. R. Nitrogenase of Klebsiella pneumoniae. Purification and properties of the component proteins. Biochem J. 1972 Jul;128(3):655–675. doi: 10.1042/bj1280655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hales B. J., Case E. E., Morningstar J. E., Dzeda M. F., Mauterer L. A. Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry. 1986 Nov 18;25(23):7251–7255. doi: 10.1021/bi00371a001. [DOI] [PubMed] [Google Scholar]
  8. Hardy R. W., Holsten R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol. 1968 Aug;43(8):1185–1207. doi: 10.1104/pp.43.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kelly M. Comparisons and cross reactions of nitrogenase from Klebsiella pneumoniae, Azotobacter chroococcum and Bacillus polymyxa. Biochim Biophys Acta. 1969;191(3):527–540. doi: 10.1016/0005-2744(69)90346-5. [DOI] [PubMed] [Google Scholar]
  10. Lowe D. J., Eady R. R., Thorneley N. F. Electron-paramagnetic-resonance studies on nitrogenase of Klebsiella pneumoniae. Evidence for acetylene- and ethylene-nitrogenase transient complexes. Biochem J. 1978 Jul 1;173(1):277–290. doi: 10.1042/bj1730277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McKenna C. E., McKenna M. C., Huang C. W. Low stereoselectivity in methylacetylene and cyclopropene reductions by nitrogenase. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4773–4777. doi: 10.1073/pnas.76.10.4773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McLean P. A., Smith B. E., Dixon R. A. Nitrogenase of Klebsiella pneumoniae nifV mutants. Biochem J. 1983 Jun 1;211(3):589–597. doi: 10.1042/bj2110589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schöllhorn R., Burris R. H. Reduction of azide by the N2-fixing enzyme system. Proc Natl Acad Sci U S A. 1967 May;57(5):1317–1323. doi: 10.1073/pnas.57.5.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yates M. G., Planqué K. Nitrogenase from Azotobacter chroococcum. Purification and properties of the component proteins. Eur J Biochem. 1975 Dec 15;60(2):467–476. doi: 10.1111/j.1432-1033.1975.tb21025.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES