Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Feb 15;250(1):197–201. doi: 10.1042/bj2500197

The influence of porphyrins on iron-catalysed generation of hydroxyl radicals.

J Van Steveninck 1, J P Boegheim 1, T M Dubbelman 1, J Van der Zee 1
PMCID: PMC1148832  PMID: 2833235

Abstract

Uroporphyrin I, haematoporphyrin and haematoporphyrin derivative had no effect on O2-. generation during oxidation of hypoxanthine by xanthine oxidase and on the formation of hydroxyl radicals (OH.) in the hypoxanthine/xanthine oxidase/Fe3+-EDTA/deoxyribose system. On the other hand, these porphyrins strongly inhibited O2-. formation in a horseradish peroxidase/H2O2/NADPH mixture, whereas they augmented OH. generation in this system after addition of Fe3+-EDTA. Experimental evidence suggests that these observations should be ascribed to the formation of a porphyrin anion radical in the horseradish peroxidase/NADPH system. The formation of this anion radical was confirmed by e.s.r. spectroscopy. This radical is apparently unable to reduce cytochrome c, but it can replace O2-. in the OH.-generating Haber-Weiss reaction.

Full text

PDF
197

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodaness R. S. The non-photosensitized potentiation by the photosensitizer hematoporphyrin of the horseradish peroxidase-catalyzed H2O2-mediated oxidation of NADPH to NADP+. Biochem Biophys Res Commun. 1984 Jan 13;118(1):191–197. doi: 10.1016/0006-291x(84)91085-4. [DOI] [PubMed] [Google Scholar]
  2. Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986 May 15;247(1):1–11. doi: 10.1016/0003-9861(86)90526-6. [DOI] [PubMed] [Google Scholar]
  3. Gutteridge J. M. Copper-phenanthroline-induced site-specific oxygen-radical damage to DNA. Detection of loosely bound trace copper in biological fluids. Biochem J. 1984 Mar 15;218(3):983–985. doi: 10.1042/bj2180983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kachar B., Zinner K., Vidigal C. C., Shimizu Y., Cilento G. Excitation of eosin when catalyzing electron transport in biochemical systems. Arch Biochem Biophys. 1979 Jun;195(1):245–247. doi: 10.1016/0003-9861(79)90347-3. [DOI] [PubMed] [Google Scholar]
  5. MAUZERALL D., FEHER G. A STUDY OF THE PHOTOINDUCED PORPHYRIN FREE RADICAL BY ELECTRON SPIN RESONANCE. Biochim Biophys Acta. 1964 Mar 30;79:430–432. [PubMed] [Google Scholar]
  6. Mason R. P. Assay of in situ radicals by electron spin resonance. Methods Enzymol. 1984;105:416–422. doi: 10.1016/s0076-6879(84)05058-8. [DOI] [PubMed] [Google Scholar]
  7. Michot J. L., Virion A., Deme D., De Prailaune S., Pommier J. NADPH oxidation catalyzed by the peroxidase/H2O2 system. Guaiacol-mediated and scopoletin-mediated oxidation of NADPH to NADPH+. Eur J Biochem. 1985 May 2;148(3):441–445. doi: 10.1111/j.1432-1033.1985.tb08859.x. [DOI] [PubMed] [Google Scholar]
  8. Morehouse K. M., Moreno S. N., Mason R. P. The one-electron reduction of uroporphyrin I by rat hepatic microsomes. Arch Biochem Biophys. 1987 Sep;257(2):276–284. doi: 10.1016/0003-9861(87)90567-4. [DOI] [PubMed] [Google Scholar]
  9. Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts. FEBS Lett. 1982 Jun 1;142(1):39–41. doi: 10.1016/0014-5793(82)80214-7. [DOI] [PubMed] [Google Scholar]
  10. Van Steveninck J., Boegheim J. P., Dubbelman T. M., Van der Zee J. The mechanism of potentiation of horseradish peroxidase-catalysed oxidation of NADPH by porphyrins. Biochem J. 1987 Mar 1;242(2):611–613. doi: 10.1042/bj2420611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yokota K., Yamazaki I. Analysis and computer simulation of aerobic oxidation of reduced nicotinamide adenine dinucleotide catalyzed by horseradish peroxidase. Biochemistry. 1977 May 3;16(9):1913–1920. doi: 10.1021/bi00628a024. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES