Abstract
Uroporphyrin I, haematoporphyrin and haematoporphyrin derivative had no effect on O2-. generation during oxidation of hypoxanthine by xanthine oxidase and on the formation of hydroxyl radicals (OH.) in the hypoxanthine/xanthine oxidase/Fe3+-EDTA/deoxyribose system. On the other hand, these porphyrins strongly inhibited O2-. formation in a horseradish peroxidase/H2O2/NADPH mixture, whereas they augmented OH. generation in this system after addition of Fe3+-EDTA. Experimental evidence suggests that these observations should be ascribed to the formation of a porphyrin anion radical in the horseradish peroxidase/NADPH system. The formation of this anion radical was confirmed by e.s.r. spectroscopy. This radical is apparently unable to reduce cytochrome c, but it can replace O2-. in the OH.-generating Haber-Weiss reaction.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bodaness R. S. The non-photosensitized potentiation by the photosensitizer hematoporphyrin of the horseradish peroxidase-catalyzed H2O2-mediated oxidation of NADPH to NADP+. Biochem Biophys Res Commun. 1984 Jan 13;118(1):191–197. doi: 10.1016/0006-291x(84)91085-4. [DOI] [PubMed] [Google Scholar]
- Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986 May 15;247(1):1–11. doi: 10.1016/0003-9861(86)90526-6. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M. Copper-phenanthroline-induced site-specific oxygen-radical damage to DNA. Detection of loosely bound trace copper in biological fluids. Biochem J. 1984 Mar 15;218(3):983–985. doi: 10.1042/bj2180983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kachar B., Zinner K., Vidigal C. C., Shimizu Y., Cilento G. Excitation of eosin when catalyzing electron transport in biochemical systems. Arch Biochem Biophys. 1979 Jun;195(1):245–247. doi: 10.1016/0003-9861(79)90347-3. [DOI] [PubMed] [Google Scholar]
- MAUZERALL D., FEHER G. A STUDY OF THE PHOTOINDUCED PORPHYRIN FREE RADICAL BY ELECTRON SPIN RESONANCE. Biochim Biophys Acta. 1964 Mar 30;79:430–432. [PubMed] [Google Scholar]
- Mason R. P. Assay of in situ radicals by electron spin resonance. Methods Enzymol. 1984;105:416–422. doi: 10.1016/s0076-6879(84)05058-8. [DOI] [PubMed] [Google Scholar]
- Michot J. L., Virion A., Deme D., De Prailaune S., Pommier J. NADPH oxidation catalyzed by the peroxidase/H2O2 system. Guaiacol-mediated and scopoletin-mediated oxidation of NADPH to NADPH+. Eur J Biochem. 1985 May 2;148(3):441–445. doi: 10.1111/j.1432-1033.1985.tb08859.x. [DOI] [PubMed] [Google Scholar]
- Morehouse K. M., Moreno S. N., Mason R. P. The one-electron reduction of uroporphyrin I by rat hepatic microsomes. Arch Biochem Biophys. 1987 Sep;257(2):276–284. doi: 10.1016/0003-9861(87)90567-4. [DOI] [PubMed] [Google Scholar]
- Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts. FEBS Lett. 1982 Jun 1;142(1):39–41. doi: 10.1016/0014-5793(82)80214-7. [DOI] [PubMed] [Google Scholar]
- Van Steveninck J., Boegheim J. P., Dubbelman T. M., Van der Zee J. The mechanism of potentiation of horseradish peroxidase-catalysed oxidation of NADPH by porphyrins. Biochem J. 1987 Mar 1;242(2):611–613. doi: 10.1042/bj2420611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokota K., Yamazaki I. Analysis and computer simulation of aerobic oxidation of reduced nicotinamide adenine dinucleotide catalyzed by horseradish peroxidase. Biochemistry. 1977 May 3;16(9):1913–1920. doi: 10.1021/bi00628a024. [DOI] [PubMed] [Google Scholar]
