Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Feb 15;250(1):209–214. doi: 10.1042/bj2500209

Inhibition of agonist-induced platelet aggregation, Ca2+ mobilization and granule secretion by guanosine 5'-[beta-thio]diphosphate and GDP in intact platelets. Evidence for an inhibitory mechanism unrelated to the inhibition of G-protein-GTP interaction.

S Krishnamurthi 1, Y Patel 1, V V Kakkar 1
PMCID: PMC1148834  PMID: 3355512

Abstract

The effect of guanosine 5'-[beta-thio]diphosphate (GDP[beta S]), reported to be an antagonist of GTP at the G-protein-binding site, on human platelet activation was examined. GDP[beta S] (0.3-3 mM) had significant inhibitory effects on platelet aggregation and 5-hydroxytryptamine (5HT) secretion induced by thrombin, collagen, the thromboxane mimetic U46619 and 1,2-dioctanoylglycerol (diC8) in intact platelets, as well as in saponin-permeabilized platelets. Similar inhibitory effects in intact platelets were also observed with ATP (over similar concentration ranges) and GDP and GTP (at 2- and 10-fold higher concentrations respectively). All four nucleotides also inhibited ADP-induced platelet aggregation in indomethacin-treated platelets under conditions where no 5HT secretion occurred. Inhibition of thrombin-induced aggregation and secretion by GDP[beta S] and ATP in intact platelets was accompanied by a reduction in the thrombin-induced rise in intracellular Ca2+ levels and 45 kDa-protein phosphorylation. The results suggest that at least some of the effects of GDP[beta S] may be unrelated to inhibition of G-protein-GTP interaction, but, instead, may be mediated via an extracellular site, common to all the nucleotides tested and perhaps via inhibition of the effects of endogenous/released ADP. The usefulness of GDP[beta S] as a tool in studying G-protein-GTP interactions in platelets is thus questionable.

Full text

PDF
209

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby B., Kowalska M. A., Wernick E., Rigmaiden M., Daniel J. L., Smith J. B. Differences in the mode of action of 1-oleoyl-2-acetyl-glycerol and phorbol ester in platelet activation. J Cyclic Nucleotide Protein Phosphor Res. 1985;10(5):473–483. [PubMed] [Google Scholar]
  2. Authi K. S., Evenden B. J., Crawford N. Metabolic and functional consequences of introducing inositol 1,4,5-trisphosphate into saponin-permeabilized human platelets. Biochem J. 1986 Feb 1;233(3):707–718. doi: 10.1042/bj2330707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brass L. F., Laposata M., Banga H. S., Rittenhouse S. E. Regulation of the phosphoinositide hydrolysis pathway in thrombin-stimulated platelets by a pertussis toxin-sensitive guanine nucleotide-binding protein. Evaluation of its contribution to platelet activation and comparisons with the adenylate cyclase inhibitory protein, Gi. J Biol Chem. 1986 Dec 25;261(36):16838–16847. [PubMed] [Google Scholar]
  5. Brass L. F., Shaller C. C., Belmonte E. J. Inositol 1,4,5-triphosphate-induced granule secretion in platelets. Evidence that the activation of phospholipase C mediated by platelet thromboxane receptors involves a guanine nucleotide binding protein-dependent mechanism distinct from that of thrombin. J Clin Invest. 1987 Apr;79(4):1269–1275. doi: 10.1172/JCI112947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colman R. W. Platelet activation: role of an ADP receptor. Semin Hematol. 1986 Apr;23(2):119–128. [PubMed] [Google Scholar]
  7. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  8. Gomperts B. D. Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors. Nature. 1983 Nov 3;306(5938):64–66. doi: 10.1038/306064a0. [DOI] [PubMed] [Google Scholar]
  9. Haslam R. J., Davidson M. M. Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets. Evidence of a role for a GTP-binding protein in platelet activation. FEBS Lett. 1984 Aug 20;174(1):90–95. doi: 10.1016/0014-5793(84)81084-4. [DOI] [PubMed] [Google Scholar]
  10. Haslam R. J., Davidson M. M. Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets. Evidence of a role for a GTP-binding protein in platelet activation. FEBS Lett. 1984 Aug 20;174(1):90–95. doi: 10.1016/0014-5793(84)81084-4. [DOI] [PubMed] [Google Scholar]
  11. Kawahara Y., Yamanishi J., Tsunemitsu M., Fukuzaki H. Protein phosphorylation and diglyceride production during serotonin release induced by epinephrine plus ADP in human platelets. Thromb Res. 1983 Jun 1;30(5):477–485. doi: 10.1016/0049-3848(83)90182-2. [DOI] [PubMed] [Google Scholar]
  12. Kinlough-Rathbone R. L., Packham M. A., Reimers H. J., Cazenave J. P., Mustard J. F. Mechanisms of platelet shape change, aggregation, and release induced by collagen, thrombin, or A23,187. J Lab Clin Med. 1977 Oct;90(4):707–719. [PubMed] [Google Scholar]
  13. Knight D. E., Scrutton M. C. Effect of various excitatory agonists on the secretion of 5-hydroxytryptamine from permeabilised human platelets induced by Ca2+ in the presence or absence of GTP. FEBS Lett. 1985 Apr 22;183(2):417–422. doi: 10.1016/0014-5793(85)80823-1. [DOI] [PubMed] [Google Scholar]
  14. Knight D. E., Scrutton M. C. Effects of guanine nucleotides on the properties of 5-hydroxytryptamine secretion from electropermeabilised human platelets. Eur J Biochem. 1986 Oct 1;160(1):183–190. doi: 10.1111/j.1432-1033.1986.tb09956.x. [DOI] [PubMed] [Google Scholar]
  15. Krishnamurthi S., Joseph S., Kakkar V. V. 1,2-Dioctanoylglycerol but not 1-oleoyl-2-acetylglycerol inhibits agonist-induced platelet responses. Dependence of effects on extent of 45-kDa protein phosphorylation and agonist type. Eur J Biochem. 1987 Sep 15;167(3):585–593. doi: 10.1111/j.1432-1033.1987.tb13376.x. [DOI] [PubMed] [Google Scholar]
  16. Krishnamurthi S., Westwick J., Kakkar V. V. Regulation of human platelet activation--analysis of cyclooxygenase and cyclic AMP-dependent pathways. Biochem Pharmacol. 1984 Oct 1;33(19):3025–3035. doi: 10.1016/0006-2952(84)90604-x. [DOI] [PubMed] [Google Scholar]
  17. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  18. Packham M. A., Guccione M. A., Perry D. W., Mustard J. F. Interactions of nucleoside di- and triphosphates with rabbit platelets. Am J Physiol. 1974 Nov;227(5):1143–1148. doi: 10.1152/ajplegacy.1974.227.5.1143. [DOI] [PubMed] [Google Scholar]
  19. Shattil S. J., Brass L. F. Induction of the fibrinogen receptor on human platelets by intracellular mediators. J Biol Chem. 1987 Jan 25;262(3):992–1000. [PubMed] [Google Scholar]
  20. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Watson S. P., Ruggiero M., Abrahams S. L., Lapetina E. G. Inositol 1,4,5-trisphosphate induces aggregation and release of 5-hydroxytryptamine from saponin-permeabilized human platelets. J Biol Chem. 1986 Apr 25;261(12):5368–5372. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES