Abstract
Isolated haemosiderin contained iron and nitrogen in a weight ratio of 6.75, with phosphorus and no detectable haem. Considerably more iron was released from haemosiderin under acidic conditions than under neutral conditions in the presence of ascorbate, nitrilotriacetate or dithionite. Unlike the situation with ascorbate, chelators such as citrate, ADP or succinate induced the release of only some iron, with almost no pH-dependence. Dehydroascorbate (the oxidized form of ascorbate with no reducing capacity) behaved like citrate, ADP, succinate or desferal, rather than like ascorbate itself, in releasing iron. GSH had less effect on the release of iron than these chelators, but in the presence of a small amount of chelator the release of iron increased, especially under acidic conditions. Thus reduction, chelation and pH were all found to be important factors involved in the release of iron from haemosiderin. Investigation by e.p.r. of hydroxyl-radical production by the released iron showed high radical productivity at an acidic pH. However, at a physiological pH, almost no radical formation was detected, except in the presence of nitrilotriacetate. These findings suggested that, under physiological conditions, haemosiderin was not an effective iron donor and was almost not involved in radical production. Under acidic conditions, however, such as in inflammation, hypoxia and in a lysosomal milieu, it could possibly be an iron donor and is thought to be implicated in radical production and tissue damage in iron-overloaded conditions.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambrosio G., Weisfeldt M. L., Jacobus W. E., Flaherty J. T. Evidence for a reversible oxygen radical-mediated component of reperfusion injury: reduction by recombinant human superoxide dismutase administered at the time of reflow. Circulation. 1987 Jan;75(1):282–291. doi: 10.1161/01.cir.75.1.282. [DOI] [PubMed] [Google Scholar]
- Bacon B. R., Tavill A. S., Brittenham G. M., Park C. H., Recknagel R. O. Hepatic lipid peroxidation in vivo in rats with chronic iron overload. J Clin Invest. 1983 Mar;71(3):429–439. doi: 10.1172/JCI110787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischbach F. A., Gregory D. W., Harrison P. M., Hoy T. G., Williams J. M. On the structure of hemosiderin and its relationship to ferritin. J Ultrastruct Res. 1971 Dec;37(5):495–503. doi: 10.1016/s0022-5320(71)80020-5. [DOI] [PubMed] [Google Scholar]
- Fletcher B. L., Dillard C. J., Tappel A. L. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal Biochem. 1973 Mar;52(1):1–9. doi: 10.1016/0003-2697(73)90327-8. [DOI] [PubMed] [Google Scholar]
- Hoy T. G., Jacobs A. Ferritin polymers and the formation of haemosiderin. Br J Haematol. 1981 Dec;49(4):593–602. doi: 10.1111/j.1365-2141.1981.tb07269.x. [DOI] [PubMed] [Google Scholar]
- Högberg J., Moldéus P., Arborgh B., O'Brien P. J., Orrenius S. The consequences of lipid peroxidation in isolated hepatocytes. Eur J Biochem. 1975 Nov 15;59(2):457–462. doi: 10.1111/j.1432-1033.1975.tb02474.x. [DOI] [PubMed] [Google Scholar]
- Högberg J., Orrenius S., Larson R. E. Lipid peroxidation in isolated hepatocytes. Eur J Biochem. 1975 Jan 15;50(3):595–602. doi: 10.1111/j.1432-1033.1975.tb09900.x. [DOI] [PubMed] [Google Scholar]
- KEBERLE H. THE BIOCHEMISTRY OF DESFERRIOXAMINE AND ITS RELATION TO IRON METABOLISM. Ann N Y Acad Sci. 1964 Oct 7;119:758–768. doi: 10.1111/j.1749-6632.1965.tb54077.x. [DOI] [PubMed] [Google Scholar]
- Kontoghiorghes G. J., Chambers S., Hoffbrand A. V. Comparative study of iron mobilization from haemosiderin, ferritin and iron(III) precipitates by chelators. Biochem J. 1987 Jan 1;241(1):87–92. doi: 10.1042/bj2410087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung H. W., Vang M. J., Mavis R. D. The cooperative interaction between vitamin E and vitamin C in suppression of peroxidation of membrane phospholipids. Biochim Biophys Acta. 1981 May 22;664(2):266–272. doi: 10.1016/0005-2760(81)90049-7. [DOI] [PubMed] [Google Scholar]
- MCKAY R. H., FINEBERG R. A. HORSE SPLEEN HEMOSIDERIN. I. ISOLATION. Arch Biochem Biophys. 1964 Mar;104:487–495. doi: 10.1016/0003-9861(64)90493-x. [DOI] [PubMed] [Google Scholar]
- MCKAY R. H., FINEBERG R. A. HORSE SPLEEN HEMOSIDERIN. II. FURTHER CHARACTERIZATION. Arch Biochem Biophys. 1964 Mar;104:496–508. doi: 10.1016/0003-9861(64)90494-1. [DOI] [PubMed] [Google Scholar]
- Mak I. T., Weglicki W. B. Characterization of iron-mediated peroxidative injury in isolated hepatic lysosomes. J Clin Invest. 1985 Jan;75(1):58–63. doi: 10.1172/JCI111697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
- Nakamoto S., Yamanoi Y., Kawabata T., Sadahira Y., Mori M., Awai M. Lipid peroxidation and cytotoxicity of Ehrlich ascites tumor cells by ferric nitrilotriacetate. Biochim Biophys Acta. 1986 Oct 31;889(1):15–22. doi: 10.1016/0167-4889(86)90004-2. [DOI] [PubMed] [Google Scholar]
- O'Connell M. J., Baum H., Peters T. J. Haemosiderin-like properties of free-radical-modified ferritin. Biochem J. 1986 Nov 15;240(1):297–300. doi: 10.1042/bj2400297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connell M. J., Ward R. J., Baum H., Peters T. J. The role of iron in ferritin- and haemosiderin-mediated lipid peroxidation in liposomes. Biochem J. 1985 Jul 1;229(1):135–139. doi: 10.1042/bj2290135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connell M., Halliwell B., Moorhouse C. P., Aruoma O. I., Baum H., Peters T. J. Formation of hydroxyl radicals in the presence of ferritin and haemosiderin. Is haemosiderin formation a biological protective mechanism? Biochem J. 1986 Mar 15;234(3):727–731. doi: 10.1042/bj2340727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reijngoud D. J., Tager J. M. The permeability properties of the lysosomal membrane. Biochim Biophys Acta. 1977 Nov 14;472(3-4):419–449. doi: 10.1016/0304-4157(77)90005-3. [DOI] [PubMed] [Google Scholar]
- Selden C., Peters T. J. Separation and assay of iron proteins in needle biopsy specimens of human liver. Clin Chim Acta. 1979 Oct 15;98(1-2):47–52. doi: 10.1016/0009-8981(79)90164-5. [DOI] [PubMed] [Google Scholar]
- Seymour C. A., Peters T. J. Organelle pathology in primary and secondary haemochromatosis with special reference to lysosomal changes. Br J Haematol. 1978 Oct;40(2):239–253. doi: 10.1111/j.1365-2141.1978.tb03661.x. [DOI] [PubMed] [Google Scholar]
- Taubold R. D. Studies on chemical nature of lipofusion (age pigment) isolated from normal human brain. Lipids. 1975 Jul;10(7):383–390. doi: 10.1007/BF02532441. [DOI] [PubMed] [Google Scholar]
- Weir M. P., Gibson J. F., Peters T. J. Biochemical studies on the isolation and characterization of human spleen haemosiderin. Biochem J. 1984 Oct 1;223(1):31–38. doi: 10.1042/bj2230031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wixom R. L., Prutkin L., Munro H. N. Hemosiderin: nature, formation, and significance. Int Rev Exp Pathol. 1980;22:193–225. [PubMed] [Google Scholar]
- Yamanoi Y., Awai M., Seno S. Degranulation effect of ferric nitrilotriacetate (Fe3+-NTA) on the pancreatic islet beta-cells: its acute toxic effect on glucose metabolism. Acta Med Okayama. 1984 Oct;38(5):423–437. doi: 10.18926/AMO/30340. [DOI] [PubMed] [Google Scholar]
- Yamanoi Y., Matsuura R., Awai M. Mechanism of iron toxicity in the liver and pancreas after a single injection of ferric nitrilotriacetate. Nihon Ketsueki Gakkai Zasshi. 1982 Dec;45(7):1229–1235. [PubMed] [Google Scholar]

