Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Apr 1;251(1):23–30. doi: 10.1042/bj2510023

The intracellular handling of insulin-related peptides in isolated pancreatic islets. Evidence for differential rates of degradation of insulin and C-peptide.

C J Rhodes 1, P A Halban 1
PMCID: PMC1148959  PMID: 3291861

Abstract

Islets of Langerhans isolated from adult rats were maintained in tissue culture for 3 days in the continued presence of [3H]leucine. Labelled proinsulin, C-peptide and insulin were measured by quantitative h.p.l.c., a method which also allowed for resolution of C-peptide I and II, and of insulin I and II (the products of the two rat insulin genes). The results showed that: (1) at early times, proinsulin was the major radiolabelled product; with progressive time in culture, intra-islet levels of [3H]proinsulin decreased, despite continuous labelling with [3H]leucine, indicating that the combined rates of proinsulin conversion into insulin and of proinsulin release, exceeded the rate of synthesis; (2) insulin I levels were always greater than those of insulin II, both in the islets and for products released to the medium; (3) the molar ratio of [3H]insulin I and II to their respective 3H-labelled C-peptides increased with time for products retained within islets, reaching a value close to 3:1 by 3 days; by contrast, for products released to the medium during the culture period, the ratio was always close to unity; (4) when islets were incubated with [3H]leucine for 2 days, and then left for a further 1 day without label (chase period), the intra-islet [3H]insulin/[3H]C-peptide ratios rose to values as high as 9:1. Again, for material released to the medium, the values were close to 1:1; (5) it is concluded that C-peptide is degraded more rapidly than insulin within islet cells, thereby accounting for the elevated insulin/C-peptide ratios. The difference between the ratios observed in the islets and those for material released to the medium is taken to indicate that degradation occurs in a discrete cellular compartment and not in the secretory granule itself.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson A. Isolated mouse pancreatic islets in culture: effects of serum and different culture media on the insulin production of the islets. Diabetologia. 1978 Jun;14(6):397–404. doi: 10.1007/BF01228134. [DOI] [PubMed] [Google Scholar]
  2. Andersson A. Long-term effects of glucose on insulin release and glucose oxidation by mouse pancreatic islets maintained in tissue culture. Biochem J. 1974 Jun;140(3):377–382. doi: 10.1042/bj1400377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersson A., Westman J., Hellerström C. Effects of glucose on the ultrastructure and insulin biosynthesis of isolated mouse pancreatic islets maintained in tissue culture. Diabetologia. 1974 Dec;10(6):743–753. doi: 10.1007/BF01219536. [DOI] [PubMed] [Google Scholar]
  4. Bienkowski R. S. Intracellular degradation of newly synthesized secretory proteins. Biochem J. 1983 Jul 15;214(1):1–10. doi: 10.1042/bj2140001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borg L. A., Schnell A. H. Lysosomes and pancreatic islet function: intracellular insulin degradation and lysosomal transformations. Diabetes Res. 1986 Jul;3(6):277–285. [PubMed] [Google Scholar]
  6. Bünzli H. F., Glatthaar B., Kunz P., Mülhaupt E., Humbel R. E. Amino acid sequence of the two insulins from mouse (Maus musculus). Hoppe Seylers Z Physiol Chem. 1972 Mar;353(3):451–458. doi: 10.1515/bchm2.1972.353.1.451. [DOI] [PubMed] [Google Scholar]
  7. Chertow B. S. The role of lysosomes and proteases in hormone secretion and degradation. Endocr Rev. 1981 Spring;2(2):137–173. doi: 10.1210/edrv-2-2-137. [DOI] [PubMed] [Google Scholar]
  8. Clark J. L., Steiner D. F. Insulin biosynthesis in the rat: demonstration of two proinsulins. Proc Natl Acad Sci U S A. 1969 Jan;62(1):278–285. doi: 10.1073/pnas.62.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cordell B., Bell G., Tischer E., DeNoto F. M., Ullrich A., Pictet R., Rutter W. J., Goodman H. M. Isolation and characterization of a cloned rat insulin gene. Cell. 1979 Oct;18(2):533–543. doi: 10.1016/0092-8674(79)90070-9. [DOI] [PubMed] [Google Scholar]
  10. Creutzfeldt W., Creutzfeldt C., Frerichs H., Perings E., Sicklinger K. The morphological substrate of the inhibition of insulin secretion by diazoxide. Horm Metab Res. 1969 Mar;1(2):53–64. doi: 10.1055/s-0028-1095173. [DOI] [PubMed] [Google Scholar]
  11. Greider M. H., Howell S. L., Lacy P. E. Isolation and properties of secretory granules from rat islets of Langerhans. II. Ultrastructure of the beta granule. J Cell Biol. 1969 Apr;41(1):162–166. doi: 10.1083/jcb.41.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Halban P. A., Amherdt M., Orci L., Renold A. E. Proinsulin modified by analogues of arginine and lysine is degraded rapidly in pancreatic B-cells. Biochem J. 1984 Apr 1;219(1):91–97. doi: 10.1042/bj2190091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Halban P. A. Inhibition of proinsulin to insulin conversion in rat islets using arginine and lysine analogs. Lack of effect on rate of release of modified products. J Biol Chem. 1982 Nov 25;257(22):13177–13180. [PubMed] [Google Scholar]
  14. Halban P. A., Mutkoski R., Dodson G., Orci L. Resistance of the insulin crystal to lysosomal proteases: implications for pancreatic B-cell crinophagy. Diabetologia. 1987 May;30(5):348–353. doi: 10.1007/BF00299029. [DOI] [PubMed] [Google Scholar]
  15. Halban P. A., Renold A. E. Influence of glucose on insulin handling by rat islets in culture. A reflection of integrated changes in insulin biosynthesis, release, and intracellular degradation. Diabetes. 1983 Mar;32(3):254–261. doi: 10.2337/diab.32.3.254. [DOI] [PubMed] [Google Scholar]
  16. Halban P. A., Rhodes C. J., Shoelson S. E. High-performance liquid chromatography (HPLC): a rapid, flexible and sensitive method for separating islet proinsulin and insulin. Diabetologia. 1986 Dec;29(12):893–896. doi: 10.1007/BF00870146. [DOI] [PubMed] [Google Scholar]
  17. Halban P. A., Wollheim C. B. Intracellular degradation of insulin stores by rat pancreatic islets in vitro. An alternative pathway for homeostasis of pancreatic insulin content. J Biol Chem. 1980 Jul 10;255(13):6003–6006. [PubMed] [Google Scholar]
  18. Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
  19. Hopcroft D. W., Mason D. R., Scott R. S. Standardization of insulin secretion from pancreatic islets: validation of a DNA assay. Horm Metab Res. 1985 Nov;17(11):559–561. doi: 10.1055/s-2007-1013606. [DOI] [PubMed] [Google Scholar]
  20. Lacy P. E., Finke E. H., Conant S., Naber S. Long-term perfusion of isolated rats islets in vitro. Diabetes. 1976 Jun;25(6):484–493. doi: 10.2337/diab.25.6.484. [DOI] [PubMed] [Google Scholar]
  21. Lomedico P., Rosenthal N., Efstratidadis A., Gilbert W., Kolodner R., Tizard R. The structure and evolution of the two nonallelic rat preproinsulin genes. Cell. 1979 Oct;18(2):545–558. doi: 10.1016/0092-8674(79)90071-0. [DOI] [PubMed] [Google Scholar]
  22. Markussen J. Mouse insulins--separation and structures. Int J Protein Res. 1971;3(3):149–155. doi: 10.1111/j.1399-3011.1971.tb01705.x. [DOI] [PubMed] [Google Scholar]
  23. Meda P. Lysosomes in normal pancreatic beta cells. Diabetologia. 1978 May;14(5):305–310. doi: 10.1007/BF01223021. [DOI] [PubMed] [Google Scholar]
  24. Nagamatsu S., Bolaffi J. L., Grodsky G. M. Direct effects of glucose on proinsulin synthesis and processing during desensitization. Endocrinology. 1987 Apr;120(4):1225–1231. doi: 10.1210/endo-120-4-1225. [DOI] [PubMed] [Google Scholar]
  25. Orci L., Halban P., Amherdt M., Ravazzola M., Vassalli J. D., Perrelet A. Nonconverted, amino acid analog-modified proinsulin stays in a Golgi-derived clathrin-coated membrane compartment. J Cell Biol. 1984 Dec;99(6):2187–2192. doi: 10.1083/jcb.99.6.2187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Orci L. Macro- and micro-domains in the endocrine pancreas. Diabetes. 1982 Jun;31(6 Pt 1):538–565. doi: 10.2337/diab.31.6.538. [DOI] [PubMed] [Google Scholar]
  27. Orci L., Ravazzola M., Amherdt M., Yanaihara C., Yanaihara N., Halban P., Renold A. E., Perrelet A. Insulin, not C-peptide (proinsulin), is present in crinophagic bodies of the pancreatic B-cell. J Cell Biol. 1984 Jan;98(1):222–228. doi: 10.1083/jcb.98.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Orci L. The insulin factory: a tour of the plant surroundings and a visit to the assembly line. The Minkowski lecture 1973 revisited. Diabetologia. 1985 Aug;28(8):528–546. doi: 10.1007/BF00281987. [DOI] [PubMed] [Google Scholar]
  29. Patzelt C., Labrecque A. D., Duguid J. R., Carroll R. J., Keim P. S., Heinrikson R. L., Steiner D. F. Detection and kinetic behavior of preproinsulin in pancreatic islets. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1260–1264. doi: 10.1073/pnas.75.3.1260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rhodes C. J., Halban P. A. Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than a constitutive, pathway. J Cell Biol. 1987 Jul;105(1):145–153. doi: 10.1083/jcb.105.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rhodes C. J., Lucas C. A., Halban P. A. Glucose stimulates the biosynthesis of rat I and II insulin to an equal extent in isolated pancreatic islets. FEBS Lett. 1987 May 4;215(1):179–182. doi: 10.1016/0014-5793(87)80137-0. [DOI] [PubMed] [Google Scholar]
  32. Schnell A. H., Borg L. A. Lysosomes and pancreatic islet function. Glucose-dependent alterations of lysosomal morphology. Cell Tissue Res. 1985;239(3):537–545. doi: 10.1007/BF00219232. [DOI] [PubMed] [Google Scholar]
  33. Smith L. F. Species variation in the amino acid sequence of insulin. Am J Med. 1966 May;40(5):662–666. doi: 10.1016/0002-9343(66)90145-8. [DOI] [PubMed] [Google Scholar]
  34. Steiner D. F., Kemmler W., Tager H. S., Peterson J. D. Proteolytic processing in the biosynthesis of insulin and other proteins. Fed Proc. 1974 Oct;33(10):2105–2115. [PubMed] [Google Scholar]
  35. Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer E., Rutter W. J., Goodman H. M. Rat insulin genes: construction of plasmids containing the coding sequences. Science. 1977 Jun 17;196(4296):1313–1319. doi: 10.1126/science.325648. [DOI] [PubMed] [Google Scholar]
  36. Villa-Komaroff L., Efstratiadis A., Broome S., Lomedico P., Tizard R., Naber S. P., Chick W. L., Gilbert W. A bacterial clone synthesizing proinsulin. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3727–3731. doi: 10.1073/pnas.75.8.3727. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES