Abstract
Addition of 1-3 mM-8-bromo-cyclic AMP to monolayer cultures of H-4 rat hepatoma cells resulted in a rapid but short-lived increase in tyrosine aminotransferase (EC 2.6.1.5) activity. The transient nature of this induction is due to desensitization to 8-bromo-cyclic AMP. Throughout this time course of induction and desensitization, removal of 8-bromo-cyclic AMP resulted in a rapid and significant decrease in tyrosine aminotransferase activity, a process referred to as 'de-induction' in this study. We showed that the changes in tyrosine aminotransferase activity in its induction, desensitization and de-induction by 8-bromo-cyclic AMP were directly attributable to changes in the synthesis rate of the protein, and the amount of translatable and hybridizable mRNA encoding for tyrosine aminotransferase (mRNATAT). We further showed that this desensitization was specific to cyclic AMP. First, only active analogues of cyclic AMP and agents which increased cellular concentrations of cyclic AMP elicited this desensitization. Second, the desensitized cells were refractory only to the effects of 8-bromo-cyclic AMP; dexamethasone and insulin induced the tyrosine aminotransferase activity in the 8-bromo-cyclic AMP-desensitized cells in a manner similar to that of the controls. Studies on the metabolism of 8-bromo-cyclic AMP suggest that neither its degradation nor the accumulation of its primary metabolite, 8-bromoadenosine, played a significant role in modulating the expression of tyrosine aminotransferase during the time course of action of 8-bromo-cyclic AMP. These results provide evidence for a specific pretranslational mode of action of cyclic AMP in the control of tyrosine aminotransferase expression in its desensitization and de-induction, in addition to the early phase of induction.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bourne H. R., Tomkins G. M., Dion S. Regulation of phosphodiesterase synthesis: requirement for cyclic adenosine monophosphate-dependent protein kinase. Science. 1973 Sep 7;181(4103):952–954. doi: 10.1126/science.181.4103.952. [DOI] [PubMed] [Google Scholar]
- Chrapkiewicz N. B., Beale E. G., Granner D. K. Induction of the messenger ribonucleic acid coding for phosphoenolpyruvate carboxykinase in H4-II-E cells. Evidence for a nuclear effect of cyclic AMP. J Biol Chem. 1982 Dec 10;257(23):14428–14432. [PubMed] [Google Scholar]
- Cimbala M. A., Lamers W. H., Nelson K., Monahan J. E., Yoo-Warren H., Hanson R. W. Rapid changes in the concentration of phosphoenolpyruvate carboxykinase mRNA in rat liver and kidney. Effects of insulin and cyclic AMP. J Biol Chem. 1982 Jul 10;257(13):7629–7636. [PubMed] [Google Scholar]
- Culpepper J. A., Liu A. Y. Pretranslational control of tyrosine aminotransferase synthesis by 8-bromo-cyclic AMP in H-4 rat hepatoma cells. J Biol Chem. 1983 Nov 25;258(22):13812–13819. [PubMed] [Google Scholar]
- D'Armiento M., Johnson G. S., Pastan I. Regulation of adenosine 3',5'-cyclic monophosphate phosphodiesterase activity in fibroblasts by intracellular concentrations of cyclic adenosine monophosphate (3T3-dibutyryl cyclic AMP-SV40-transformed cells-michaelis constants-L cells-prostaglandin E 1 ). Proc Natl Acad Sci U S A. 1972 Feb;69(2):459–462. doi: 10.1073/pnas.69.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
- Granner D., Noguchi T., Diesterhaft M. Evidence for a dual effect of dibutyryl cyclic AMP on the synthesis of tyrosine aminotransferase in rat liver. Adv Cyclic Nucleotide Res. 1981;14:529–537. [PubMed] [Google Scholar]
- Hargrove J. L., Granner D. K. Inhibition of hepatoma cell growth by analogs of adenosine and cyclic AMP and the influence of enzymes in mammalian sera. J Cell Physiol. 1982 Jun;111(3):232–238. doi: 10.1002/jcp.1041110303. [DOI] [PubMed] [Google Scholar]
- Hashimoto S., Schmid W., Schütz G. Transcriptional activation of the rat liver tyrosine aminotransferase gene by cAMP. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6637–6641. doi: 10.1073/pnas.81.21.6637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt T., Vanderhoff G., London I. M. Control of globin synthesis: the role of heme. J Mol Biol. 1972 May 28;66(3):471–481. doi: 10.1016/0022-2836(72)90427-5. [DOI] [PubMed] [Google Scholar]
- Iynedjian P. B., Hanson R. W. Increase in level of functional messenger RNA coding for phosphoenolpyruvate carboxykinase (GTP) during induction by cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1977 Jan 25;252(2):655–662. [PubMed] [Google Scholar]
- Koontz J. W., Wicks W. D. Stimulation of tyrosine aminotransferase degradation by methylthioinosine. J Biol Chem. 1984 Jan 25;259(2):929–934. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lamers W. H., Hanson R. W., Meisner H. M. cAMP stimulates transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase in rat liver nuclei. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5137–5141. doi: 10.1073/pnas.79.17.5137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu A. Y., Chan T., Chen K. Y. Induction of the regulatory subunit of type I adenosine cyclic 3':5'-monophosphate-dependent protein kinase in differentiated N-18 mouse neuroblastoma cells. Cancer Res. 1981 Nov;41(11 Pt 1):4579–4587. [PubMed] [Google Scholar]
- Liu A. Y. Role of cyclic AMP-dependent protein kinase in the induction of tyrosine aminotransferase. J Biol Chem. 1980 May 25;255(10):4421–4429. [PubMed] [Google Scholar]
- Maganiello V., Vaughan M. Prostaglandin E 1 effects on adenosine 3':5'-cyclic monophosphate concentration and phosphodiesterase activity in fibroblasts (mouse L cells-tissue culture-enzyme kinetics-prostaglandin homologues). Proc Natl Acad Sci U S A. 1972 Jan;69(1):269–273. doi: 10.1073/pnas.69.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin T. F., Kowalchyk J. A. Growth inhibition by adenosine 3',5-monophosphate derivatives does not require 3',5' phosphodiester linkage. Science. 1981 Sep 4;213(4512):1120–1122. doi: 10.1126/science.6267695. [DOI] [PubMed] [Google Scholar]
- Muneyama K., Bauer R. J., Shuman D. A., Robins R. K., Simon L. N. Chemical synthesis and biological activity of 8-substituted adenosine 3',5'-cyclic monophosphate derivatives. Biochemistry. 1971 Jun 8;10(12):2390–2395. doi: 10.1021/bi00788a033. [DOI] [PubMed] [Google Scholar]
- Noguchi T., Diesterhaft M., Granner D. Evidence for a dual effect of dibutyryl cyclic AMP on the synthesis of tyrosine aminotransferase in rat liver. J Biol Chem. 1982 Mar 10;257(5):2386–2390. [PubMed] [Google Scholar]
- PITOT H. C., PERAINO C., MORSE P. A., Jr, POTTER V. R. HEPATOMAS IN TISSUE CULTURE COMPARED WITH ADAPTING LIVER IN VIVO. Natl Cancer Inst Monogr. 1964 Apr;13:229–245. [PubMed] [Google Scholar]
- Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
- Ricciardi R. P., Miller J. S., Roberts B. E. Purification and mapping of specific mRNAs by hybridization-selection and cell-free translation. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4927–4931. doi: 10.1073/pnas.76.10.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherer G., Schmid W., Strange C. M., Röwekamp W., Schütz G. Isolation of cDNA clones coding for rat tyrosine aminotransferase. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7205–7208. doi: 10.1073/pnas.79.23.7205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz J. P., Passonneau J. V. Cyclic AMP-mediated induction of the cyclic AMP phosphodiesterase of C-6 glioma cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3844–3848. doi: 10.1073/pnas.71.10.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stellwagen R. H., Sailor R. D., Kohli K. K. Acceleration of the degradation of tyrosine aminotransferase in rat hepatome (HTC) cells by inhibitors of cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1162–1167. doi: 10.1016/0006-291x(77)91415-2. [DOI] [PubMed] [Google Scholar]
- Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]
- Thompson W. J., Terasaki W. L., Epstein P. M., Strada S. J. Assay of cyclic nucleotide phosphodiesterase and resolution of multiple molecular forms of the enzyme. Adv Cyclic Nucleotide Res. 1979;10:69–92. [PubMed] [Google Scholar]
- Uzunov P., Shein H. M., Weiss B. Cyclic AMP phosphodiesterase in cloned astrocytoma cells: norepinephrine induces a specific enzyme form. Science. 1973 Apr 20;180(4083):304–306. doi: 10.1126/science.180.4083.304. [DOI] [PubMed] [Google Scholar]



