Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Apr 1;251(1):305–308. doi: 10.1042/bj2510305

Biochemical measurements in Alzheimer's disease reveal a necessity for improved neuroimaging techniques to study metabolism.

A Najlerahim 1, D M Bowen 1
PMCID: PMC1148998  PMID: 3390157

Abstract

A series of Alzheimer's disease and control brains were dissected to determine the extent of atrophy (based on total protein content) and loss of choline acetyltransferase activity in the cerebral cortex from the entire surface of the diseased brains. The distribution of intensity of pathology so determined is strikingly similar to the degree of hypometabolism as shown by positron emission tomography. It is argued that the hypometabolism can be explained (at least in part) by focal areas of atrophy.

Full text

PDF
305

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowen D. M., White P., Spillane J. A., Goodhardt M. J., Curzon G., Iwangoff P., Meier-Ruge W., Davison A. N. Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet. 1979 Jan 6;1(8106):11–14. doi: 10.1016/s0140-6736(79)90454-9. [DOI] [PubMed] [Google Scholar]
  2. Chawluk J. B., Alavi A., Dann R., Hurtig H. I., Bais S., Kushner M. J., Zimmerman R. A., Reivich M. Positron emission tomography in aging and dementia: effect of cerebral atrophy. J Nucl Med. 1987 Apr;28(4):431–437. [PubMed] [Google Scholar]
  3. Cudennec A., Duverger D., Lloyd K. G., MacKenzie E. T., McCulloch J., Motohashi N., Nishikawa T., Scatton B. Effects of the GABA receptor agonist, progabide, upon local cerebral glucose utilization. Brain Res. 1987 Oct 13;423(1-2):162–172. doi: 10.1016/0006-8993(87)90836-5. [DOI] [PubMed] [Google Scholar]
  4. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
  5. Frackowiak R. S., Pozzilli C., Legg N. J., Du Boulay G. H., Marshall J., Lenzi G. L., Jones T. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain. 1981 Dec;104(Pt 4):753–778. doi: 10.1093/brain/104.4.753. [DOI] [PubMed] [Google Scholar]
  6. HORNYKIEWICZ O. [The tropical localization and content of noradrenalin and dopamine (3-hydroxytyramine) in the substantia nigra of normal persons and patients with Parkinson's disease]. Wien Klin Wochenschr. 1963 May 3;75:309–312. [PubMed] [Google Scholar]
  7. Horwitz B., Grady C. L., Schlageter N. L., Duara R., Rapoport S. I. Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer's disease. Brain Res. 1987 Mar 31;407(2):294–306. doi: 10.1016/0006-8993(87)91107-3. [DOI] [PubMed] [Google Scholar]
  8. Hubbard B. M., Anderson J. M. A quantitative study of cerebral atrophy in old age and senile dementia. J Neurol Sci. 1981 Apr;50(1):135–145. doi: 10.1016/0022-510x(81)90048-4. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. McGeer P. L., Kamo H., Harrop R., McGeer E. G., Martin W. R., Pate B. D., Li D. K. Comparison of PET, MRI, and CT with pathology in a proven case of Alzheimer's disease. Neurology. 1986 Dec;36(12):1569–1574. doi: 10.1212/wnl.36.12.1569. [DOI] [PubMed] [Google Scholar]
  11. SWEELEY C. C., KLIONSKY B. FABRY'S DISEASE: CLASSIFICATION AS A SPHINGOLIPIDOSIS AND PARTIAL CHARACTERIZATION OF A NOVEL GLYCOLIPID. J Biol Chem. 1963 Sep;238:3148–3150. [PubMed] [Google Scholar]
  12. Sims N. R., Bowen D. M., Davison A. N. [14C]acetylcholine synthesis and [14C]carbon dioxide production from [U-14C]glucose by tissue prisms from human neocortex. Biochem J. 1981 Jun 15;196(3):867–876. doi: 10.1042/bj1960867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sims N. R., Finegan J. M., Blass J. P., Bowen D. M., Neary D. Mitochondrial function in brain tissue in primary degenerative dementia. Brain Res. 1987 Dec 8;436(1):30–38. doi: 10.1016/0006-8993(87)91553-8. [DOI] [PubMed] [Google Scholar]
  14. Spillane J. A., White P., Goodhardt W. J., Flack R. H., Bowen D. M., Davison A. N. Selective vulnerability of neurones in organic dementia. Nature. 1977 Apr 7;266(5602):558–559. doi: 10.1038/266558a0. [DOI] [PubMed] [Google Scholar]
  15. Suzuki K., Suzuki Y. Globoid cell leucodystrophy (Krabbe's disease): deficiency of galactocerebroside beta-galactosidase. Proc Natl Acad Sci U S A. 1970 Jun;66(2):302–309. doi: 10.1073/pnas.66.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tamminga C. A., Foster N. L., Fedio P., Bird E. D., Chase T. N. Alzheimer's disease: low cerebral somatostatin levels correlate with impaired cognitive function and cortical metabolism. Neurology. 1987 Jan;37(1):161–165. doi: 10.1212/wnl.37.1.161. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES