Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Apr 15;251(2):441–446. doi: 10.1042/bj2510441

Azide-binding studies reveal type 3 copper heterogeneity in ascorbate oxidase from the green zucchini squash (Cucurbita pepo).

L Casella 1, M Gullotti 1, G Pallanza 1, A Pintar 1, A Marchesini 1
PMCID: PMC1149022  PMID: 2840893

Abstract

Titration of native ascorbate oxidase from green zucchini squash (Cucurbita pepo) with azide in 0.1 M-phosphate buffer, pH 6.8, exhibits a biphasic spectral behaviour. Binding of the anion with 'high affinity' (K greater than 5000 M-1) produces a broad increase of absorption in the 400-500 nm region (delta epsilon approximately 1000 M-1.cm-1) and c.d. activity in the 300-450 nm region, whereas azide binding with 'low affinity' (K approximately 100 M-1) is characterized by an intense absorption band at 420 nm (delta epsilon = 6000 M-1.cm-1), corresponding to negative c.d. activity and a decrease of absorption at 330 nm (delta epsilon = -2000 M-1.cm-1). The high-affinity binding involves a minor fraction of the protein containing Type 3 copper in the reduced state, and the spectral features of this azide adduct can be eliminated by treatment of the native enzyme with small amounts of H2O2, followed by dialysis before azide addition. As shown by e.s.r. spectroscopy, Type 2 copper is involved in both types of binding, its signal being converted into that of a species with small hyperfine splitting constant [12 mT (approximately 120 G)] in the case of the low-affinity azide adduct. The spectral similarities of the two types of azide adducts with the corresponding adducts formed by native laccase, which also exhibits Type 3 copper heterogeneity, are discussed.

Full text

PDF
441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allendorf M. D., Spira D. J., Solomon E. I. Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site. Proc Natl Acad Sci U S A. 1985 May;82(10):3063–3067. doi: 10.1073/pnas.82.10.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dawson J. H., Dooley D. M., Gray H. B. Coordination environment and fluoride binding of type 2 copper in the blue copper protein ascorbate oxidase. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5028–5031. doi: 10.1073/pnas.77.9.5028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deinum J., Reinhammar B., Marchesini A. The stoichiometry of the three different types of copper in ascorbate oxidase from green zucchini squash. FEBS Lett. 1974 Jun 15;42(3):241–245. doi: 10.1016/0014-5793(74)80736-2. [DOI] [PubMed] [Google Scholar]
  4. Dooley D. M., Dawson J. H., Stephens P. J., Gray H. B. Spectroscopic studies of ascorbate oxidase. Electronic structure of the blue copper sites. Biochemistry. 1981 Mar 31;20(7):2024–2028. doi: 10.1021/bi00510a044. [DOI] [PubMed] [Google Scholar]
  5. Farver O., Goldberg M., Pecht I. A circular dichroism study of the reactions of Rhus laccase with dioxygen. Eur J Biochem. 1980 Feb;104(1):71–77. doi: 10.1111/j.1432-1033.1980.tb04401.x. [DOI] [PubMed] [Google Scholar]
  6. Goldberg M., Farver O., Pecht I. Interaction of Rhus laccase with dioxygen and its reduction intermediates. J Biol Chem. 1980 Aug 10;255(15):7353–7361. [PubMed] [Google Scholar]
  7. Kawahara K., Suzuki S., Sakurai T., Nakahara A. Characterization of cucumber ascorbate oxidase and its reaction with hexacyanoferrate (II). Arch Biochem Biophys. 1985 Aug 15;241(1):179–186. doi: 10.1016/0003-9861(85)90374-1. [DOI] [PubMed] [Google Scholar]
  8. Marchesini A., Capelletti P., Canonica L., Danieli B., Tollari S. Evidence about the catecholoxidase activity of the enzyme ascorbate oxidase extracted from Cucurbita pepo medullosa. Biochim Biophys Acta. 1977 Oct 13;484(2):290–300. doi: 10.1016/0005-2744(77)90085-7. [DOI] [PubMed] [Google Scholar]
  9. Marchesini A., Kroneck P. M. Ascorbate oxidase from Cucurbita pepo medullosa. New method of purification and reinvestigation of properties. Eur J Biochem. 1979 Nov 1;101(1):65–76. doi: 10.1111/j.1432-1033.1979.tb04217.x. [DOI] [PubMed] [Google Scholar]
  10. Morpurgo L., Desideri A., Rotilio G. Heterogeneity of the Type 3 copper in Japanese-lacquer-tree (Rhus vernicifera) laccase. Biochem J. 1982 Dec 1;207(3):625–627. doi: 10.1042/bj2070625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakamura T., Makino N., Ogura Y. Purification and properties of ascorbate oxidase from cucumber. J Biochem. 1968 Aug;64(2):189–195. doi: 10.1093/oxfordjournals.jbchem.a128879. [DOI] [PubMed] [Google Scholar]
  12. Sakurai T., Sawada S., Suzuki S., Nakahara A. An investigation on reduction process of cucumber ascorbate oxidase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):644–648. doi: 10.1016/0006-291x(86)90041-0. [DOI] [PubMed] [Google Scholar]
  13. Sakurai T., Sawada S., Suzuki S., Nakahara A. Oxidation of reduced cucumber ascorbate oxidase. Biochem Biophys Res Commun. 1985 Sep 16;131(2):647–652. doi: 10.1016/0006-291x(85)91286-0. [DOI] [PubMed] [Google Scholar]
  14. Sheline R. R., Strothkamp K. G. The pH dependence of the inhibition of ascorbate oxidase by anions. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1343–1348. doi: 10.1016/0006-291x(80)90098-4. [DOI] [PubMed] [Google Scholar]
  15. Strothkamp R. E., Dawson C. R. A spectroscopic and kinetic investigation of anion binding to ascorbate oxidase. Biochemistry. 1977 May 3;16(9):1926–1929. doi: 10.1021/bi00628a026. [DOI] [PubMed] [Google Scholar]
  16. Winkler M. E., Spira D. J., LuBein C. D., Thamann T. J., Solomon E. I. Anion binding to oxidized type 2 depleted and native laccase: a spectroscopically effective model for exogenous ligand binding to the type 3--type 2 active site. Biochem Biophys Res Commun. 1982 Jul 30;107(2):727–734. doi: 10.1016/0006-291x(82)91551-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES