Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Apr 15;251(2):447–452. doi: 10.1042/bj2510447

Insulin and glucagon attenuate the ability of cholera toxin to activate adenylate cyclase in intact hepatocytes.

F J Irvine 1, M D Houslay 1
PMCID: PMC1149023  PMID: 2840894

Abstract

Treatment of intact hepatocytes with cholera toxin at 37 degrees C caused a stable activation of adenylate cyclase activity after a lag period of around 10 min. The presence of either insulin (10 nM) or glucagon (10 nM) in the incubation medium had little effect on this lag period; however, these hormones markedly attenuated the maximal activation of adenylate cyclase activity that could be achieved by treatment with cholera toxin. Such actions of insulin and glucagon were dose-dependent, with EC50 values (concn. giving 50% inhibition) of 0.20 nM for insulin and 0.49 nM for glucagon, and were not additive. Treatment of intact hepatocytes with either glucagon or insulin did not affect the ability of cholera toxin to cause the ADP-ribosylation of the 45 kDa alpha-subunit of the stimulatory guanine nucleotide regulatory protein, Gs, in intact hepatocytes. It is suggested that treatment of intact hepatocytes with either insulin or glucagon attenuates the stimulatory action of ADP-ribosylated Gs on adenylate cyclase.

Full text

PDF
447

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bregman M. D., Trivedi D., Hruby V. J. Glucagon amino groups. Evaluation of modifications leading to antagonism and agonism. J Biol Chem. 1980 Dec 25;255(24):11725–11731. [PubMed] [Google Scholar]
  2. Cooper D. M., Jagus R., Somers R. L., Rodbell M. Cholera toxin modifies diverse GTP-modulated regulatory proteins. Biochem Biophys Res Commun. 1981 Aug 31;101(4):1179–1185. doi: 10.1016/0006-291x(81)91572-2. [DOI] [PubMed] [Google Scholar]
  3. Doberska C. A., MacPherson A. J., Martin B. R. Requirement for guanosine triphosphate for cholera-toxin-catalysed incorporation of adenosine diphosphate ribose into rat liver plasma membranes and for activation of adenylate cyclase. Biochem J. 1980 Mar 15;186(3):749–754. doi: 10.1042/bj1860749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gawler D., Houslay M. D. Insulin stimulates a novel GTPase activity in human platelets. FEBS Lett. 1987 May 25;216(1):94–98. doi: 10.1016/0014-5793(87)80763-9. [DOI] [PubMed] [Google Scholar]
  5. Gawler D., Milligan G., Houslay M. D. Treatment of streptozotocin-diabetic rats with metformin restores the ability of insulin to inhibit adenylate cyclase activity and demonstrates that insulin does not exert this action through the inhibitory guanine nucleotide regulatory protein Gi. Biochem J. 1988 Jan 15;249(2):537–542. doi: 10.1042/bj2490537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gawler D., Milligan G., Spiegel A. M., Unson C. G., Houslay M. D. Abolition of the expression of inhibitory guanine nucleotide regulatory protein Gi activity in diabetes. Nature. 1987 May 21;327(6119):229–232. doi: 10.1038/327229a0. [DOI] [PubMed] [Google Scholar]
  7. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  8. Gordon J. C., Blecher M. Partial purification of a water-soluble liver protein that regulates adenylate cyclase activity (basal, hormone- and cholera-toxin-activated) and cholera-toxin-catalyzed ADP-ribosylation of the membrane G protein. Biochim Biophys Acta. 1984 Oct 16;801(3):325–333. doi: 10.1016/0304-4165(84)90135-1. [DOI] [PubMed] [Google Scholar]
  9. Graves C. B., McDonald J. M. Insulin and phorbol ester stimulate phosphorylation of a 40-kDa protein in adipocyte plasma membranes. J Biol Chem. 1985 Sep 15;260(20):11286–11292. [PubMed] [Google Scholar]
  10. Heyworth C. M., Houslay M. D. Challenge of hepatocytes by glucagon triggers a rapid modulation of adenylate cyclase activity in isolated membranes. Biochem J. 1983 Jul 15;214(1):93–98. doi: 10.1042/bj2140093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heyworth C. M., Houslay M. D. Insulin exerts actions through a distinct species of guanine nucleotide regulatory protein: inhibition of adenylate cyclase. Biochem J. 1983 Aug 15;214(2):547–552. doi: 10.1042/bj2140547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heyworth C. M., Wallace A. V., Houslay M. D. Insulin and glucagon regulate the activation of two distinct membrane-bound cyclic AMP phosphodiesterases in hepatocytes. Biochem J. 1983 Jul 15;214(1):99–110. doi: 10.1042/bj2140099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heyworth C. M., Whetton A. D., Wong S., Martin B. R., Houslay M. D. Insulin inhibits the cholera-toxin-catalysed ribosylation of a Mr-25000 protein in rat liver plasma membranes. Biochem J. 1985 Jun 15;228(3):593–603. doi: 10.1042/bj2280593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hildebrandt J. D., Sekura R. D., Codina J., Iyengar R., Manclark C. R., Birnbaumer L. Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. Nature. 1983 Apr 21;302(5910):706–709. doi: 10.1038/302706a0. [DOI] [PubMed] [Google Scholar]
  15. Houslay M. D., Elliott K. R. Cholera toxin mediated activation of adenylate cyclase in intact rat hepatocytes. FEBS Lett. 1979 Aug 15;104(2):359–363. doi: 10.1016/0014-5793(79)80852-2. [DOI] [PubMed] [Google Scholar]
  16. Houslay M. D., Elliott K. R. Is the receptor-mediated endocytosis of cholera toxin A pre-requisite for its activation of adenylate cyclase in intact rat hepatocytes? FEBS Lett. 1981 Jun 15;128(2):289–292. doi: 10.1016/0014-5793(81)80101-9. [DOI] [PubMed] [Google Scholar]
  17. Houslay M. D., Ellory J. C., Smith G. A., Hesketh T. R., Stein J. M., Warren G. B., Metcalfe J. C. Exchange of partners in glucagon receptor-adenylate cyclase complexes. Physical evidence for the independent, mobile receptor model. Biochim Biophys Acta. 1977 Jun 2;467(2):208–219. doi: 10.1016/0005-2736(77)90197-3. [DOI] [PubMed] [Google Scholar]
  18. Houslay M. D. Insulin, glucagon and the receptor-mediated control of cyclic AMP concentrations in liver. Twenty-second Colworth medal lecture. Biochem Soc Trans. 1986 Apr;14(2):183–193. doi: 10.1042/bst0140183. [DOI] [PubMed] [Google Scholar]
  19. Houslay M. D., Metcalfe J. C., Warren G. B., Hesketh T. R., Smith G. A. The glucagon receptor of rat liver plasma membrane can couple to adenylate cyclase without activating it. Biochim Biophys Acta. 1976 Jun 17;436(2):489–494. doi: 10.1016/0005-2736(76)90210-8. [DOI] [PubMed] [Google Scholar]
  20. Johnson G. L., Bourne H. R. Influence of cholera toxin on the regulation of adenylate cyclase by GTP. Biochem Biophys Res Commun. 1977 Sep 23;78(2):792–798. doi: 10.1016/0006-291x(77)90249-2. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Malbon C. C., Greenberg M. L. 3,3',5-triiodothyronine administration in vivo modulates the hormone-sensitive adenylate cyclase system of rat hepatocytes. J Clin Invest. 1982 Feb;69(2):414–426. doi: 10.1172/JCI110465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Murphy G. J., Hruby V. J., Trivedi D., Wakelam M. J., Houslay M. D. The rapid desensitization of glucagon-stimulated adenylate cyclase is a cyclic AMP-independent process that can be mimicked by hormones which stimulate inositol phospholipid metabolism. Biochem J. 1987 Apr 1;243(1):39–46. doi: 10.1042/bj2430039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Brien R. M., Houslay M. D., Milligan G., Siddle K. The insulin receptor tyrosyl kinase phosphorylates holomeric forms of the guanine nucleotide regulatory proteins Gi and Go. FEBS Lett. 1987 Feb 23;212(2):281–288. doi: 10.1016/0014-5793(87)81361-3. [DOI] [PubMed] [Google Scholar]
  25. O'Brien R. M., Siddle K., Houslay M. D., Hall A. Interaction of the human insulin receptor with the ras oncogene product p21. FEBS Lett. 1987 Jun 15;217(2):253–259. doi: 10.1016/0014-5793(87)80673-7. [DOI] [PubMed] [Google Scholar]
  26. Smith S. A., Elliott K. R., Pogson C. I. Differential effects of tryptophan on glucose synthesis in rats and guinea pigs. Biochem J. 1978 Dec 15;176(3):817–825. doi: 10.1042/bj1760817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  28. Vaughan M., Moss J. Mechanism of action of choleragen. J Supramol Struct. 1978;8(4):473–488. doi: 10.1002/jss.400080410. [DOI] [PubMed] [Google Scholar]
  29. Wakelam M. J., Murphy G. J., Hruby V. J., Houslay M. D. Activation of two signal-transduction systems in hepatocytes by glucagon. Nature. 1986 Sep 4;323(6083):68–71. doi: 10.1038/323068a0. [DOI] [PubMed] [Google Scholar]
  30. Whetton A. D., Gordon L. M., Houslay M. D. Elevated membrane cholesterol concentrations inhibit glucagon-stimulated adenylate cyclase. Biochem J. 1983 Feb 15;210(2):437–449. doi: 10.1042/bj2100437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Whetton A. D., Needham L., Dodd N. J., Heyworth C. M., Houslay M. D. Forskolin and ethanol both perturb the structure of liver plasma membranes and activate adenylate cyclase activity. Biochem Pharmacol. 1983 May 15;32(10):1601–1608. doi: 10.1016/0006-2952(83)90334-9. [DOI] [PubMed] [Google Scholar]
  32. Zick Y., Sagi-Eisenberg R., Pines M., Gierschik P., Spiegel A. M. Multisite phosphorylation of the alpha subunit of transducin by the insulin receptor kinase and protein kinase C. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9294–9297. doi: 10.1073/pnas.83.24.9294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van Heyningen S. Cholera toxin. Biol Rev Camb Philos Soc. 1977 Nov;52(4):509–509. doi: 10.1111/j.1469-185x.1977.tb00858.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES