Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 May 1;251(3):771–776. doi: 10.1042/bj2510771

An investigation of the functioning of the two major haemoglobins of the Sphenodon using fast reaction kinetic methods.

T Brittain 1
PMCID: PMC1149070  PMID: 3415645

Abstract

The blood of the Sphenodon (Sphenodon punctatus) has been fractionated into two major and one minor haemoglobin components by ion-exchange chromatography. The two major haemoglobins have been studied in terms of their kinetic reactions with both O2 and CO. The combination of flash photolysis and stopped-flow indicates kinetic differences between two states of the proteins identified with the allosteric T and R forms. The major kinetic findings show that (i) in these haemoglobins the T state is retained to a higher level of ligation than that commonly found in mammals, (ii) the rate of conversion from the R to the T state (k0RT) is some three orders of magnitude lower in the Sphenodon haemoglobins than in mammalian systems. A comparison between the kinetic and equilibrium data for these haemoglobins indicates that the very weak cooperativity exhibited by these proteins arises from the close similarity of the affinities of the two allosteric states together with a very low value for the allosteric equilibrium constant, although very significant kinetic differences exist between the two states.

Full text

PDF
771

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonini E., Brunori M., Anderson S. Studies on the relations between molecular and functional properties of hemoglobin. VII. Kinetic effects of the reversible dissociation of hemoglobin into single chain molecules. J Biol Chem. 1968 Apr 25;243(8):1816–1822. [PubMed] [Google Scholar]
  2. Antonini E., Bucci E., Fronticelli C., Chiancone E., Wyman J., Rossi-Fanelli A. The properties and interactions of the isolated alpha- and beta-chains of human haemoglobin. V. The reaction of alpha- and beta-chains. J Mol Biol. 1966 May;17(1):29–46. doi: 10.1016/s0022-2836(66)80092-x. [DOI] [PubMed] [Google Scholar]
  3. Baldwin J. M. Structure and function of haemoglobin. Prog Biophys Mol Biol. 1975;29(3):225–320. doi: 10.1016/0079-6107(76)90024-9. [DOI] [PubMed] [Google Scholar]
  4. Barber D., Parr S. R., Greenwood C. The reactions of Pseudomonas cytochrome c-551 oxidase with potassium cyanide. Biochem J. 1978 Oct 1;175(1):239–249. doi: 10.1042/bj1750239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blackmore R., Brittain T. Kinetic studies on the nitrite reductase of Wolinella succinogenes. Biochem J. 1986 Jan 15;233(2):553–557. doi: 10.1042/bj2330553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brittain T. A kinetic and equilibrium study of ligand binding to a Root-effect haemoglobin. Biochem J. 1985 Jun 1;228(2):409–414. doi: 10.1042/bj2280409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brittain T. A two-state thermodynamic and kinetic analysis of the allosteric functioning of the haemoglobin of an extreme poikilotherm. Biochem J. 1984 Aug 1;221(3):561–568. doi: 10.1042/bj2210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brittain T., Greenwood C. Photolytic studies on the carbon monoxide complex of sulphaemoglobin. Biochem J. 1982 Jan 1;201(1):153–159. doi: 10.1042/bj2010153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brittain T., Sutherland J., Greenwood C. A study of the kinetics of the reaction of ligands with the liganded states of mouse embryonic haemoglobins. Biochem J. 1986 Feb 15;234(1):151–155. doi: 10.1042/bj2340151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carson S. D., Wells C. A., Findsen E. W., Friedman J. M., Ondrias M. R. Interspecies variations in the transient heme species generated subsequent to CO photolysis from hemoglobins. J Biol Chem. 1987 Mar 5;262(7):3044–3051. [PubMed] [Google Scholar]
  11. GIBSON Q. H. The photochemical formation of a quickly reacting form of haemoglobin. Biochem J. 1959 Feb;71(2):293–303. doi: 10.1042/bj0710293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hopfield J. J., Shulman R. G., Ogawa S. An allosteric model of hemoglobin. I. Kinetics. J Mol Biol. 1971 Oct 28;61(2):425–443. doi: 10.1016/0022-2836(71)90391-3. [DOI] [PubMed] [Google Scholar]
  13. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  14. Olson J. S., Andersen M. E., Gibson Q. H. The dissociation of the first oxygen molecule from some mammalian oxyhemoglobins. J Biol Chem. 1971 Oct 10;246(19):5919–5923. [PubMed] [Google Scholar]
  15. Parkhurst L. J., Gibson Q. H. The reaction of carbon monoxide with horse hemoglobin in solution, in erythrocytes, and in crystals. J Biol Chem. 1967 Dec 25;242(23):5762–5770. [PubMed] [Google Scholar]
  16. Parkhurst L. J., Gibson Q. H. The reaction of carbon monoxide with horse hemoglobin in solution, in erythrocytes, and in crystals. J Biol Chem. 1967 Dec 25;242(23):5762–5770. [PubMed] [Google Scholar]
  17. Rubin M. M., Changeux J. P. On the nature of allosteric transitions: implications of non-exclusive ligand binding. J Mol Biol. 1966 Nov 14;21(2):265–274. doi: 10.1016/0022-2836(66)90097-0. [DOI] [PubMed] [Google Scholar]
  18. Sawicki C. A., Gibson Q. H. Properties of the T state of human oxyhemoglobin studies by laser photolysis. J Biol Chem. 1977 Nov 10;252(21):7538–7547. [PubMed] [Google Scholar]
  19. Sawicki C. A., Gibson Q. H. Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. J Biol Chem. 1976 Mar 25;251(6):1533–1542. [PubMed] [Google Scholar]
  20. Sawicki C. A., Khaleque M. A. Laser photolysis study of conformational change rates for hemoglobin in viscous solutions. Biophys J. 1983 Nov;44(2):191–199. doi: 10.1016/S0006-3495(83)84291-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wells R. M., Tetens V., Brittain T. Absence of cooperative haemoglobin-oxygen binding in Sphenodon, a reptilian relict from the Triassic. Nature. 1983 Dec 1;306(5942):500–502. doi: 10.1038/306500a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES