Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 May 1;251(3):787–794. doi: 10.1042/bj2510787

Effect of oxygen concentration on microsomal oxidation of ethanol and generation of oxygen radicals.

S Puntarulo 1, A I Cederbaum 1
PMCID: PMC1149072  PMID: 3415646

Abstract

The iron-catalysed production of hydroxyl radicals, by rat liver microsomes (microsomal fractions), assessed by the oxidation of substrate scavengers and ethanol, displayed a biphasic response to the concentration of O2 (varied from 3 to 70%), reaching a maximal value with 20% O2. The decreased rates of hydroxyl-radical generation at lower O2 concentrations correlates with lower rates of production of H2O2, the precursor of hydroxyl radical, whereas the decreased rates at elevated O2 concentrations correlate with lower rates (relative to 20% O2) of activity of NADPH-cytochrome P-450 reductase, which reduces iron and is responsible for redox cycling of iron by the microsomes. The oxidation of aniline or aminopyrine and the cytochrome P-450/oxygen-radical-independent oxidation of ethanol also displayed a biphasic response to the concentration of O2, reaching a maximum at 20% O2, which correlates with the dithionite-reducible CO-binding spectra of cytochrome P-450. Microsomal lipid peroxidation increased as the concentration of O2 was raised from 3 to 7 to 20% O2, and then began to level off. This different pattern of malondialdehyde generation compared with hydroxyl-radical production probably reflects the lack of a role for hydroxyl radical in microsomal lipid peroxidation. These results point to the complex role for O2 in microsomal generation of oxygen radicals, which is due in part to the critical necessity for maintaining the redox state of autoxidizable components of the reaction system.

Full text

PDF
787

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aust S. D., Morehouse L. A., Thomas C. E. Role of metals in oxygen radical reactions. J Free Radic Biol Med. 1985;1(1):3–25. doi: 10.1016/0748-5514(85)90025-x. [DOI] [PubMed] [Google Scholar]
  2. Aust S. D., Roerig D. L., Pederson T. C. Evidence for superoxide generation by NADPH-cytochrome c reductase of rat liver microsomes. Biochem Biophys Res Commun. 1972 Jun 9;47(5):1133–1137. doi: 10.1016/0006-291x(72)90952-7. [DOI] [PubMed] [Google Scholar]
  3. Bast A., Steeghs M. H. Hydroxyl radicals are not involved in NADPH dependent microsomal lipid peroxidation. Experientia. 1986 May 15;42(5):555–556. doi: 10.1007/BF01946700. [DOI] [PubMed] [Google Scholar]
  4. Beloqui O., Cederbaum A. I. Microsomal interactions between iron, paraquat, and menadione: effect on hydroxyl radical production and alcohol oxidation. Arch Biochem Biophys. 1985 Oct;242(1):187–196. doi: 10.1016/0003-9861(85)90492-8. [DOI] [PubMed] [Google Scholar]
  5. Beloqui O., Cederbaum A. I. Prevention of microsomal production of hydroxyl radicals, but not lipid peroxidation, by the glutathione-glutathione peroxidase system. Biochem Pharmacol. 1986 Aug 15;35(16):2663–2669. doi: 10.1016/0006-2952(86)90172-3. [DOI] [PubMed] [Google Scholar]
  6. Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi: 10.1016/s0076-6879(78)52032-6. [DOI] [PubMed] [Google Scholar]
  7. COCHIN J., AXELROD J. Biochemical and pharmacological changes in the rat following chronic administration of morphine nalorphine and normorphine. J Pharmacol Exp Ther. 1959 Feb;125(2):105–110. [PubMed] [Google Scholar]
  8. Cederbaum A. I., Cohen G. Microsomal oxidant radical production and ethanol oxidation. Methods Enzymol. 1984;105:516–522. doi: 10.1016/s0076-6879(84)05071-0. [DOI] [PubMed] [Google Scholar]
  9. Cederbaum A. I. Microsomal generation of hydroxyl radicals: its role in microsomal ethanol oxidizing system (MEOS) activity and requirement for iron. Ann N Y Acad Sci. 1987;492:35–49. doi: 10.1111/j.1749-6632.1987.tb48651.x. [DOI] [PubMed] [Google Scholar]
  10. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
  11. Conn P. M., Smith R. G., Rogers D. C. Stimulation of pituitary gonadotropin release does not require internalization of gonadotropin-releasing hormone. J Biol Chem. 1981 Feb 10;256(3):1098–1100. [PubMed] [Google Scholar]
  12. Crapo J. D., Tierney D. F. Superoxide dismutase and pulmonary oxygen toxicity. Am J Physiol. 1974 Jun;226(6):1401–1407. doi: 10.1152/ajplegacy.1974.226.6.1401. [DOI] [PubMed] [Google Scholar]
  13. Dybing E., Nelson S. D., Mitchell J. R., Sasame H. A., Gillette J. R. Oxidation of alpha-methyldopa and other catechols by cytochrome P-450-generated superoxide anion: possible mechanism of methyldopa hepatitis. Mol Pharmacol. 1976 Nov;12(6):911–920. [PubMed] [Google Scholar]
  14. Feierman D. E., Cederbaum A. I. The effect of EDTA and iron on the oxidation of hydroxyl radical scavenging agents and ethanol by rat liver microsomes. Biochem Biophys Res Commun. 1983 Oct 31;116(2):765–770. doi: 10.1016/0006-291x(83)90590-9. [DOI] [PubMed] [Google Scholar]
  15. Fong K. L., McCay P. B., Poyer J. L., Keele B. B., Misra H. Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J Biol Chem. 1973 Nov 25;248(22):7792–7797. [PubMed] [Google Scholar]
  16. Franklin M. R., Estabrook R. W. On the inhibitory action of mersalyl on microsomal drug oxidation: a rigid organization of the electron transport chain. Arch Biochem Biophys. 1971 Mar;143(1):318–329. doi: 10.1016/0003-9861(71)90213-x. [DOI] [PubMed] [Google Scholar]
  17. Guengerich F. P. Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase. Biochemistry. 1978 Aug 22;17(17):3633–3639. doi: 10.1021/bi00610a033. [DOI] [PubMed] [Google Scholar]
  18. Hildebrandt A. G., Roots I., Tjoe M., Heinemeyer G. Hydrogen peroxide in hepatic microsomes. Methods Enzymol. 1978;52:342–350. doi: 10.1016/s0076-6879(78)52037-5. [DOI] [PubMed] [Google Scholar]
  19. Hrycay E. G., O'Brien P. J. Cytochrome P-450 as a microsomal peroxidase utilizing a lipid peroxide substrate. Arch Biochem Biophys. 1971 Nov;147(1):14–27. doi: 10.1016/0003-9861(71)90304-3. [DOI] [PubMed] [Google Scholar]
  20. Imai Y., Sato R. Dual effect of ethyl isocyanide on drug hydroxylation by liver microsomes. J Biochem. 1968 Mar;63(3):380–389. [PubMed] [Google Scholar]
  21. KAMPFFMEYER H., KIESE M. THE HYDROXYLATION OF ANILINE AND N-ETHYLANILINE BY MICROSOMAL ENZYMES AT LOW OXYGEN PRESSURES. Biochem Z. 1964 May 22;339:454–459. [PubMed] [Google Scholar]
  22. Kappus H., Sies H. Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia. 1981 Dec 15;37(12):1233–1241. doi: 10.1007/BF01948335. [DOI] [PubMed] [Google Scholar]
  23. Klein S. M., Cohen G., Cederbaum A. I. Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical generating systems. Biochemistry. 1981 Oct 13;20(21):6006–6012. doi: 10.1021/bi00524a013. [DOI] [PubMed] [Google Scholar]
  24. Koop D. R., Morgan E. T., Tarr G. E., Coon M. J. Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. J Biol Chem. 1982 Jul 25;257(14):8472–8480. [PubMed] [Google Scholar]
  25. Kostrucha J., Kappus H. Inverse relationship of ethane or n-pentane and malondialdehyde formed during lipid peroxidation in rat liver microsomes with different oxygen concentrations. Biochim Biophys Acta. 1986 Nov 14;879(2):120–125. doi: 10.1016/0005-2760(86)90093-7. [DOI] [PubMed] [Google Scholar]
  26. Krikun G., Cederbaum A. I. Evaluation of microsomal pathways of oxidation of alcohols and hydroxyl radical scavenging agents with carbon monoxide and cobalt protoporphyrin IX. Biochem Pharmacol. 1985 Aug 15;34(16):2929–2935. doi: 10.1016/0006-2952(85)90018-8. [DOI] [PubMed] [Google Scholar]
  27. Kuthan H., Tsuji H., Graf H., Ullrich V. Generation of superoxide anion as a source of hydrogen peroxide in a reconstituted monooxygenase system. FEBS Lett. 1978 Jul 15;91(2):343–345. doi: 10.1016/0014-5793(78)81206-x. [DOI] [PubMed] [Google Scholar]
  28. Kuthan H., Ullrich V. Oxidase and oxygenase function of the microsomal cytochrome P450 monooxygenase system. Eur J Biochem. 1982 Sep 1;126(3):583–588. doi: 10.1111/j.1432-1033.1982.tb06820.x. [DOI] [PubMed] [Google Scholar]
  29. Levin W., Lu A. Y., Jacobson M., Kuntzman R., Poyer J. L., McCay P. B. Lipid peroxidation and the degradation of cytochrome P-450 heme. Arch Biochem Biophys. 1973 Oct;158(2):842–852. doi: 10.1016/0003-9861(73)90580-8. [DOI] [PubMed] [Google Scholar]
  30. Masters B. S., Bilimoria M. H., Kamin H., Gibson Q. H. The mechanism of 1- and 2-electron transfers catalyzed by reduced triphosphopyridine nucleotide-cytochrome c reductase. J Biol Chem. 1965 Oct;240(10):4081–4088. [PubMed] [Google Scholar]
  31. NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Noll T., de Groot H., Sies H. Distinct temporal relation among oxygen uptake, malondialdehyde formation, and low-level chemiluminescence during microsomal lipid peroxidation. Arch Biochem Biophys. 1987 Jan;252(1):284–291. doi: 10.1016/0003-9861(87)90033-6. [DOI] [PubMed] [Google Scholar]
  33. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  34. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  35. Prough R. A., Masters B. S. Studies on the NADPH oxidase reaction of NADPH-cytochrome C reductase. I. The role of superoxide anion. Ann N Y Acad Sci. 1973;212:89–93. doi: 10.1111/j.1749-6632.1973.tb47588.x. [DOI] [PubMed] [Google Scholar]
  36. Pryor W. A., Tang R. H. Ethylene formation from methional. Biochem Biophys Res Commun. 1978 Mar 30;81(2):498–503. doi: 10.1016/0006-291x(78)91562-0. [DOI] [PubMed] [Google Scholar]
  37. Reiter R., Burk R. F. Effect of oxygen tension on the generation of alkanes and malondialdehyde by peroxidizing rat liver microsomes. Biochem Pharmacol. 1987 Mar 15;36(6):925–929. doi: 10.1016/0006-2952(87)90186-9. [DOI] [PubMed] [Google Scholar]
  38. Rubin E., Lieber C. S., Alvares A. P., Levin W., Kuntzman R. Ethanol binding to hepatic microsomes. Its increase by ethanol consumption. Biochem Pharmacol. 1971 Jan;20(1):229–231. doi: 10.1016/0006-2952(71)90489-8. [DOI] [PubMed] [Google Scholar]
  39. STAUDINGER H., ZUBRZYEKI Z. ZUR KINETIK DER MIKROSOMALEN NADPH-OXYDATION BEI VERSCHIEDENEN SAUERSTOFFDRUCKEN. Hoppe Seylers Z Physiol Chem. 1965;340:191–199. doi: 10.1515/bchm2.1965.340.1-2.191. [DOI] [PubMed] [Google Scholar]
  40. Sato S. Free radicals in NADPH-microsomes-triphenyltetrazolium chloride system as evidenced by initiation of sulfite oxidation. Biochim Biophys Acta. 1967;143(3):554–561. doi: 10.1016/0005-2728(67)90060-6. [DOI] [PubMed] [Google Scholar]
  41. Strobel H. W., Coon M. J. Effect of superoxide generation and dismutation on hydroxylation reactions catalyzed by liver microsomal cytochrome P-450. J Biol Chem. 1971 Dec 25;246(24):7826–7829. [PubMed] [Google Scholar]
  42. Svingen B. A., Buege J. A., O'Neal F. O., Aust S. D. The mechanism of NADPH-dependent lipid peroxidation. The propagation of lipid peroxidation. J Biol Chem. 1979 Jul 10;254(13):5892–5899. [PubMed] [Google Scholar]
  43. Thurman R. G., Ley H. G., Scholz R. Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem. 1972 Feb;25(3):420–430. doi: 10.1111/j.1432-1033.1972.tb01711.x. [DOI] [PubMed] [Google Scholar]
  44. Turrens J. F., Freeman B. A., Crapo J. D. Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch Biochem Biophys. 1982 Sep;217(2):411–421. doi: 10.1016/0003-9861(82)90519-7. [DOI] [PubMed] [Google Scholar]
  45. Turrens J. F., Freeman B. A., Levitt J. G., Crapo J. D. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys. 1982 Sep;217(2):401–410. doi: 10.1016/0003-9861(82)90518-5. [DOI] [PubMed] [Google Scholar]
  46. Winston G. W., Cederbaum A. I. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. I. Oxidation of hydroxyl radical scavenging agents. J Biol Chem. 1983 Feb 10;258(3):1508–1513. [PubMed] [Google Scholar]
  47. Winston G. W., Cederbaum A. I. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. II. Role in microsomal oxidation of ethanol. J Biol Chem. 1983 Feb 10;258(3):1514–1519. [PubMed] [Google Scholar]
  48. Winston G. W., Feierman D. E., Cederbaum A. I. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase. Arch Biochem Biophys. 1984 Jul;232(1):378–390. doi: 10.1016/0003-9861(84)90553-8. [DOI] [PubMed] [Google Scholar]
  49. Winston G. W., Harvey W., Berl L., Cederbaum A. I. The generation of hydroxyl and alkoxyl radicals from the interaction of ferrous bipyridyl with peroxides. Biochem J. 1983 Nov 15;216(2):415–421. doi: 10.1042/bj2160415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. de Groot H., Noll T. The crucial role of hypoxia in halothane-induced lipid peroxidation. Biochem Biophys Res Commun. 1984 Feb 29;119(1):139–143. doi: 10.1016/0006-291x(84)91629-2. [DOI] [PubMed] [Google Scholar]
  51. de Groot H., Noll T. The crucial role of low steady state oxygen partial pressures in haloalkane free-radical-mediated lipid peroxidation. Possible implications in haloalkane liver injury. Biochem Pharmacol. 1986 Jan 1;35(1):15–19. doi: 10.1016/0006-2952(86)90546-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES