Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 May 1;251(3):849–855. doi: 10.1042/bj2510849

The dimerization of half-molecule fragments of transferrin.

J Williams 1, K Moreton 1
PMCID: PMC1149080  PMID: 3415649

Abstract

Partial proteolysis was used to prepare half-molecule fragments of hen ovotransferrin. N-Terminal and C-terminal fragments associate to form an N-terminal fragment-C-terminal fragment dimer. Variant forms of the N- and C-terminal fragments can be prepared in which a few amino acid residues are lacking from the C-terminal ends of the fragments. These variant fragments are partially or completely unable to associate; the suggestion that the molecular recognition sites are located in these C-terminal stretches of the N-terminal half-molecule (320-332) and of the C-terminal half-molecule (683-686) is in agreement with X-ray-crystallography data for human lactotransferrin [Anderson, Baker, Dodson, Norris, Rumball, Waters & Baker (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1769-1773].

Full text

PDF
849

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisen P., Leibman A., Zweier J. Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem. 1978 Mar 25;253(6):1930–1937. [PubMed] [Google Scholar]
  2. Anderson B. F., Baker H. M., Dodson E. J., Norris G. E., Rumball S. V., Waters J. M., Baker E. N. Structure of human lactoferrin at 3.2-A resolution. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1769–1773. doi: 10.1073/pnas.84.7.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brock J. H., Arzabe F., Lampreave F., Piñeiro A. The effect of trypsin on bovine transferrin and lactoferrin. Biochim Biophys Acta. 1976 Sep 28;446(1):214–225. doi: 10.1016/0005-2795(76)90112-4. [DOI] [PubMed] [Google Scholar]
  4. Brown-Mason A., Woodworth R. C. Physiological levels of binding and iron donation by complementary half-molecules of ovotransferrin to transferrin receptors of chick reticulocytes. J Biol Chem. 1984 Feb 10;259(3):1866–1873. [PubMed] [Google Scholar]
  5. Bruton C. J., Hartley B. S. Chemical studies on methionyl-tRNA synthetase from Escherichia coli. J Mol Biol. 1970 Sep 14;52(2):165–178. doi: 10.1016/0022-2836(70)90023-9. [DOI] [PubMed] [Google Scholar]
  6. Butterworth R. M., Gibson J. F., Williams J. Electron-paramagnetic-resonance spectroscopy of iron-binding fragments of hen ovotransferrins. Biochem J. 1975 Sep;149(3):559–563. doi: 10.1042/bj1490559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chasteen N. D., Williams J. The influence of pH on the equilibrium distribution of iron between the metal-binding sites of human transferrin. Biochem J. 1981 Mar 1;193(3):717–727. doi: 10.1042/bj1930717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans R. W., Williams J. Studies of the binding of different iron donors to human serum transferrin and isolation of iron-binding fragments from the N- and C-terminal regions of the protein. Biochem J. 1978 Aug 1;173(2):543–552. doi: 10.1042/bj1730543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans R. W., Williams J. The electrophoresis of transferrins in urea/polyacrylamide gels. Biochem J. 1980 Sep 1;189(3):541–546. doi: 10.1042/bj1890541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayashi R. Carboxypeptidase Y. Methods Enzymol. 1976;45:568–587. doi: 10.1016/s0076-6879(76)45051-6. [DOI] [PubMed] [Google Scholar]
  11. Jeltsch J. M., Chambon P. The complete nucleotide sequence of the chicken ovotransferrin mRNA. Eur J Biochem. 1982 Feb;122(2):291–295. doi: 10.1111/j.1432-1033.1982.tb05879.x. [DOI] [PubMed] [Google Scholar]
  12. Lineback-Zins J., Brew K. Preparation and characterization of an NH2-terminal fragment of human serum transferrin containing a single iron-binding site. J Biol Chem. 1980 Jan 25;255(2):708–713. [PubMed] [Google Scholar]
  13. MacGillivray R. T., Mendez E., Shewale J. G., Sinha S. K., Lineback-Zins J., Brew K. The primary structure of human serum transferrin. The structures of seven cyanogen bromide fragments and the assembly of the complete structure. J Biol Chem. 1983 Mar 25;258(6):3543–3553. [PubMed] [Google Scholar]
  14. March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 1974 Jul;60(1):149–152. doi: 10.1016/0003-2697(74)90139-0. [DOI] [PubMed] [Google Scholar]
  15. Offord R. E. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966 Aug 6;211(5049):591–593. doi: 10.1038/211591a0. [DOI] [PubMed] [Google Scholar]
  16. Rose T. M., Plowman G. D., Teplow D. B., Dreyer W. J., Hellström K. E., Brown J. P. Primary structure of the human melanoma-associated antigen p97 (melanotransferrin) deduced from the mRNA sequence. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1261–1265. doi: 10.1073/pnas.83.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weeds A. G., McLachlan A. D. Structural homology of myosin alkali light chains, troponin C and carp calcium binding protein. Nature. 1974 Dec 20;252(5485):646–649. doi: 10.1038/252646a0. [DOI] [PubMed] [Google Scholar]
  18. Williams J. A comparison of glycopeptides from the ovotransferrin and serum transferrin of the hen. Biochem J. 1968 Jun;108(1):57–67. doi: 10.1042/bj1080057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Williams J., Elleman T. C., Kingston I. B., Wilkins A. G., Kuhn K. A. The primary structure of hen ovotransferrin. Eur J Biochem. 1982 Feb;122(2):297–303. doi: 10.1111/j.1432-1033.1982.tb05880.x. [DOI] [PubMed] [Google Scholar]
  20. Williams J., Grace S. A., Williams J. M. Evolutionary significance of the renal excretion of transferrin half-molecule fragments. Biochem J. 1982 Feb 1;201(2):417–419. doi: 10.1042/bj2010417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams J. Iron-binding fragments from the carboxyl-terminal region of hen ovotransferrin. Biochem J. 1975 Jul;149(1):237–244. doi: 10.1042/bj1490237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Williams J., Moreton K., Goodearl A. D. Selective reduction of a disulphide bridge in hen ovotransferrin. Biochem J. 1985 Jun 15;228(3):661–665. doi: 10.1042/bj2280661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Williams J. The formation of iron-binding fragments of hen ovotransferrin by limited proteolysis. Biochem J. 1974 Sep;141(3):745–752. doi: 10.1042/bj1410745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wright J. F., Hunter W. M. A convenient replacement for cyanogen bromide-activated solid phases in immunoradiometric assays. J Immunol Methods. 1982;48(3):311–325. doi: 10.1016/0022-1759(82)90332-5. [DOI] [PubMed] [Google Scholar]
  25. Zak O., Leibman A., Aisen P. Metal-binding properties of a single-sited transferrin fragment. Biochim Biophys Acta. 1983 Feb 15;742(3):490–495. doi: 10.1016/0167-4838(83)90266-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES