Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 May 15;252(1):215–220. doi: 10.1042/bj2520215

Characteristics of the Ca2+ pump and Ca2+-ATPase in the plasma membrane of rat myometrium.

A Enyedi 1, J Minami 1, A J Caride 1, J T Penniston 1
PMCID: PMC1149126  PMID: 2971350

Abstract

A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.

Full text

PDF
215

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E., Wikström M. K. (Ca2+ + Mg2+)-stimulated ATPase activity of rabbit myometrium plasma membrane is blocked by oxytocin. FEBS Lett. 1979 Jan 15;97(2):283–287. doi: 10.1016/0014-5793(79)80103-9. [DOI] [PubMed] [Google Scholar]
  2. Barrabin H., Garrahan P. J., Rega A. F. Vanadate inhibition of the Ca2+-ATPase from human red cell membranes. Biochim Biophys Acta. 1980 Aug 14;600(3):796–804. doi: 10.1016/0005-2736(80)90482-4. [DOI] [PubMed] [Google Scholar]
  3. Borke J. L., Minami J., Verma A., Penniston J. T., Kumar R. Monoclonal antibodies to human erythrocyte membrane Ca++-Mg++ adenosine triphosphatase pump recognize an epitope in the basolateral membrane of human kidney distal tubule cells. J Clin Invest. 1987 Nov;80(5):1225–1231. doi: 10.1172/JCI113196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  5. Caroni P., Carafoli E. An ATP-dependent Ca2+-pumping system in dog heart sarcolemma. Nature. 1980 Feb 21;283(5749):765–767. doi: 10.1038/283765a0. [DOI] [PubMed] [Google Scholar]
  6. ERNSTER L., LINDBERG O. Determination of organic phosphorus compounds by phosphate analysis. Methods Biochem Anal. 1956;3:1–22. doi: 10.1002/9780470110195.ch1. [DOI] [PubMed] [Google Scholar]
  7. Gill D. L., Grollman E. F., Kohn L. D. Calcium transport mechanisms in membrane vesicles from guinea pig brain synaptosomes. J Biol Chem. 1981 Jan 10;256(1):184–192. [PubMed] [Google Scholar]
  8. Gmaj P., Murer H., Kinne R. Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem J. 1979 Mar 15;178(3):549–557. doi: 10.1042/bj1780549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grover A. K., Kwan C. Y., Daniel E. E. Ca2+ dependence of calcium uptake by rat myometrium plasma membrane-enriched fraction. Am J Physiol. 1982 May;242(5):C278–C282. doi: 10.1152/ajpcell.1982.242.5.C278. [DOI] [PubMed] [Google Scholar]
  10. Grover A. K., Kwan C. Y., Daniel E. E. Na--Ca exchange in rat myometrium membrane vesicles highly enriched in plasma membranes. Am J Physiol. 1981 May;240(5):C175–C182. doi: 10.1152/ajpcell.1981.240.5.C175. [DOI] [PubMed] [Google Scholar]
  11. Grover A. K., Kwan C. Y., Rangachari P. K., Daniel E. E. Na-Ca exchange in a smooth muscle plasma membrane-enriched fraction. Am J Physiol. 1983 Mar;244(3):C158–C165. doi: 10.1152/ajpcell.1983.244.3.C158. [DOI] [PubMed] [Google Scholar]
  12. Hildmann B., Schmidt A., Murer H. Ca++-transport across basal-lateral plasma membranes from rat small intestinal epithelial cells. J Membr Biol. 1982;65(1-2):55–62. doi: 10.1007/BF01870469. [DOI] [PubMed] [Google Scholar]
  13. Kwan C. Y., Kostka P., Grover A. K., Law J. S., Daniel E. E. Calmodulin stimulation of plasmalemmal Ca2+-pump of canine aortic smooth muscle. Blood Vessels. 1986;23(1):22–33. doi: 10.1159/000158622. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lin S. H. Novel ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+-Mg2+)-ATPase are different proteins. J Biol Chem. 1985 Jul 5;260(13):7850–7856. [PubMed] [Google Scholar]
  17. Lin S. H. The rat liver plasma membrane high affinity (Ca2+-Mg2+)-ATPase is not a calcium pump. Comparison with ATP-dependent calcium transporter. J Biol Chem. 1985 Sep 15;260(20):10976–10980. [PubMed] [Google Scholar]
  18. Minami J., Penniston J. T. Ca2+ uptake by corpus-luteum plasma membranes. Evidence for the presence of both a Ca2+-pumping ATPase and a Ca2+-dependent nucleoside triphosphatase. Biochem J. 1987 Mar 15;242(3):889–894. doi: 10.1042/bj2420889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Niggli V., Adunyah E. S., Penniston J. T., Carafoli E. Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem. 1981 Jan 10;256(1):395–401. [PubMed] [Google Scholar]
  20. Popescu L. M., Nutu O., Panoiu C. Oxytocin contracts the human uterus at term by inhibiting the myometrial Ca2+-extrusion pump. Biosci Rep. 1985 Jan;5(1):21–28. doi: 10.1007/BF01117437. [DOI] [PubMed] [Google Scholar]
  21. Raeymaekers L., Wuytack F., Casteels R. Subcellular fractionation of pig stomach smooth muscle. A study of the distribution of the (Ca2+ + Mg2+)-ATPase activity in plasmalemma and endoplasmic reticulum. Biochim Biophys Acta. 1985 May 28;815(3):441–454. doi: 10.1016/0005-2736(85)90372-4. [DOI] [PubMed] [Google Scholar]
  22. Raeymaekers L., Wuytack F., Eggermont J., De Schutter G., Casteels R. Isolation of a plasma-membrane fraction from gastric smooth muscle. Comparison of the calcium uptake with that in endoplasmic reticulum. Biochem J. 1983 Feb 15;210(2):315–322. doi: 10.1042/bj2100315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Soloff M. S., Sweet P. Oxytocin inhibition of (Ca2+ + Mg2+)-ATPase activity in rat myometrial plasma membranes. J Biol Chem. 1982 Sep 25;257(18):10687–10693. [PubMed] [Google Scholar]
  24. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Verma A. K., Penniston J. T. A high affinity Ca2+-stimulated and Mg2+-dependent ATPase in rat corpus luteum plasma membrane fractions. J Biol Chem. 1981 Feb 10;256(3):1269–1275. [PubMed] [Google Scholar]
  26. Wuytack F., De Schutter G., Casteels R. Purification of (Ca2+ + Mg2+)-ATPase from smooth muscle by calmodulin affinity chromatography. FEBS Lett. 1981 Jul 6;129(2):297–300. doi: 10.1016/0014-5793(81)80187-1. [DOI] [PubMed] [Google Scholar]
  27. Wuytack F., De Schutter G., Casteels R. The effect of calmodulin on the active calcium-ion transport and (Ca2+ + Mg2+)-dependent ATPase in microsomal fractions of smooth muscle compared with that in erythrocytes and cardiac muscle. Biochem J. 1980 Sep 15;190(3):827–831. doi: 10.1042/bj1900827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wuytack F., De Schutter G., Verbist J., Casteels R. Antibodies to the calmodulin-binding Ca2+-transport ATPase from smooth muscle. FEBS Lett. 1983 Apr 5;154(1):191–195. doi: 10.1016/0014-5793(83)80901-6. [DOI] [PubMed] [Google Scholar]
  29. Wuytack F., Raeymaekers L., De Schutter G., Casteels R. Demonstration of the phosphorylated intermediates of the Ca2+-transport ATPase in a microsomal fraction and in a (Ca2+ + Mg2+)-ATPase purified from smooth muscle by means of calmodulin affinity chromatography. Biochim Biophys Acta. 1982 Dec 8;693(1):45–52. doi: 10.1016/0005-2736(82)90469-2. [DOI] [PubMed] [Google Scholar]
  30. Wuytack F., Raeymaekers L., Verbist J., De Smedt H., Casteels R. Evidence for the presence in smooth muscle of two types of Ca2+-transport ATPase. Biochem J. 1984 Dec 1;224(2):445–451. doi: 10.1042/bj2240445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zurini M., Krebs J., Penniston J. T., Carafoli E. Controlled proteolysis of the purified Ca2+-ATPase of the erythrocyte membrane. A correlation between the structure and the function of the enzyme. J Biol Chem. 1984 Jan 10;259(1):618–627. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES