Abstract
The oxygen-consumption rates and the activities of fumarase and beta-hydroxyacyl-CoA dehydrogenase were compared in mitochondria isolated from fetal- and neonatal-rat kidney. Whole-organ ATP, phosphocreatine and creatine contents were determined in parallel. Kidney mitochondrial respiratory rates in the presence of succinate, glutamate/malate and palmitoyl-L-carnitine increased between 21 days post coitum and 1 day post partum, together with activities of oxidative enzymes. However, this postnatal maturation of oxidative metabolism was not yet initiated in mitochondria isolated from kidney 1 h post partum. An increase in ATP and phosphocreatine was observed immediately after delivery; newborn-rat kidney ATP content then remained high, whereas phosphocreatine reserves decreased considerably between 6 h and 1 day post partum. It is concluded that the increase in high-energy phosphate compounds observed at birth is not initially related to an activation of oxidative phosphorylation, and probably involves a transient stimulation of anaerobic glycolysis, while a progressive mitochondrial maturation takes place in the rat kidney during the first day of newborn life.
Full text
PDF![337](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cba3/1149149/1591d9b40326/biochemj00230-0031.png)
![338](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cba3/1149149/c2de860433c4/biochemj00230-0032.png)
![339](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cba3/1149149/29f1712158e9/biochemj00230-0033.png)
![340](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cba3/1149149/8322261627fc/biochemj00230-0034.png)
![341](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cba3/1149149/0473735fad07/biochemj00230-0035.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aprille J. R., Asimakis G. K. Postnatal development of rat liver mitochondria: state 3 respiration, adenine nucleotide translocase activity, and the net accumulation of adenine nucleotides. Arch Biochem Biophys. 1980 May;201(2):564–575. doi: 10.1016/0003-9861(80)90546-9. [DOI] [PubMed] [Google Scholar]
- Bastin J., Cambon N., Thompson M., Lowry O. H., Burch H. B. Change in energy reserves in different segments of the nephron during brief ischemia. Kidney Int. 1987 Jun;31(6):1239–1247. doi: 10.1038/ki.1987.137. [DOI] [PubMed] [Google Scholar]
- Bastin J., Sofack F., Boulekbache H., Bismuth J., Geloso J. P. Perinatal changes in adenine nucleotide content of developing rat kidney. J Dev Physiol. 1986 Apr;8(2):97–103. [PubMed] [Google Scholar]
- Burch H. B., Bross T. E., Brooks C. A., Cole B. R., Lowry O. H. The distribution of six enzymes of oxidative metabolism along the rat nephron. J Histochem Cytochem. 1984 Jul;32(7):731–736. doi: 10.1177/32.7.6588129. [DOI] [PubMed] [Google Scholar]
- Burch H. B., Kuhlman A. M., Skerjance J., Lowry O. H. Changes in patterns of enzymes of carbohydrate metabolism in the developing rat kidney. Pediatrics. 1971 Jan;47(1 Suppl):199+–199+. [PubMed] [Google Scholar]
- Delaval E., Andriamanantsara S., Freund N., Bastin J., Geloso J. P. Changes in carnitine-palmitoyl-transferase and carnitine-acetyl-transferase activity in rat kidney during development; effects of fasting. J Dev Physiol. 1985 Dec;7(6):365–372. [PubMed] [Google Scholar]
- Delaval E., Moreau E., Geloso J. P. Development of ammonia and glucose productions from glutamine in foetal rat kidney; effects of metabolic acidosis. Pflugers Arch. 1979 Feb 14;379(1):95–100. doi: 10.1007/BF00622910. [DOI] [PubMed] [Google Scholar]
- Geloso J. P., Basset J. C. Role of adrenal glands in development of foetal rat kidney Na-K-ATPase. Pflugers Arch. 1974 Apr 11;348(2):105–113. doi: 10.1007/BF00586473. [DOI] [PubMed] [Google Scholar]
- Horster M. F., Wilson P. D. Enzyme patterns in nephron ontogeny. Int J Pediatr Nephrol. 1983 Sep;4(3):133–144. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LeLièvre-Pégorier M., Geloso J. P. Otogeny of sugar transport in fetal rat kidney. Biol Neonate. 1980;38(1-2):16–24. doi: 10.1159/000241321. [DOI] [PubMed] [Google Scholar]
- Osmundsen H., Sherratt H. S. A novel mechanism for inhibition of beta-oxidation by methylenecyclopropylacetyl-CoA, a metabolite of hypoglycin. FEBS Lett. 1975 Jul 15;55(1):38–41. doi: 10.1016/0014-5793(75)80951-3. [DOI] [PubMed] [Google Scholar]
- Pollak J. K., Sutton R. The transport and accumulation of adenine nucleotides during mitochondrial biogenesis. Biochem J. 1980 Oct 15;192(1):75–83. doi: 10.1042/bj1920075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollak J. K. The maturation of the inner membrane of foetal rat liver mitochondria. Biochem J. 1975 Sep;150(3):477–488. doi: 10.1042/bj1500477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Razanoelina M., Delaval E., Bastin J., Bismuth J., Freund N., Geloso J. P. Métabolisme oxydatif mitochondrial dans le rein de rat au cours de la période périnatale. C R Acad Sci III. 1987;304(10):251–254. [PubMed] [Google Scholar]
- Schaeverbeke J., Cheignon M. Differentiation of glomerular filter and tubular reabsorption apparatus during foetal development of the rat kidney. J Embryol Exp Morphol. 1980 Aug;58:157–175. [PubMed] [Google Scholar]
- Sofack F., Bastin J., Boulekbache H., Bismuth J., Delaval E., Geloso J. P. Role of catecholamines in the control of newborn kidney adenine nucleotide content. Biol Neonate. 1987;51(5):268–272. doi: 10.1159/000242663. [DOI] [PubMed] [Google Scholar]
- Sutton R., Pollak J. K. Hormone-initiated maturation of rat liver mitochondria after birth. Biochem J. 1980 Jan 15;186(1):361–367. doi: 10.1042/bj1860361. [DOI] [PMC free article] [PubMed] [Google Scholar]