Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jun 1;252(2):337–341. doi: 10.1042/bj2520337

Effects of birth on energy metabolism in the rat kidney.

J Bastin 1, E Delaval 1, N Freund 1, M Razanoelina 1, F Djouadi 1, J Bismuth 1, J P Geloso 1
PMCID: PMC1149149  PMID: 3415656

Abstract

The oxygen-consumption rates and the activities of fumarase and beta-hydroxyacyl-CoA dehydrogenase were compared in mitochondria isolated from fetal- and neonatal-rat kidney. Whole-organ ATP, phosphocreatine and creatine contents were determined in parallel. Kidney mitochondrial respiratory rates in the presence of succinate, glutamate/malate and palmitoyl-L-carnitine increased between 21 days post coitum and 1 day post partum, together with activities of oxidative enzymes. However, this postnatal maturation of oxidative metabolism was not yet initiated in mitochondria isolated from kidney 1 h post partum. An increase in ATP and phosphocreatine was observed immediately after delivery; newborn-rat kidney ATP content then remained high, whereas phosphocreatine reserves decreased considerably between 6 h and 1 day post partum. It is concluded that the increase in high-energy phosphate compounds observed at birth is not initially related to an activation of oxidative phosphorylation, and probably involves a transient stimulation of anaerobic glycolysis, while a progressive mitochondrial maturation takes place in the rat kidney during the first day of newborn life.

Full text

PDF
337

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aprille J. R., Asimakis G. K. Postnatal development of rat liver mitochondria: state 3 respiration, adenine nucleotide translocase activity, and the net accumulation of adenine nucleotides. Arch Biochem Biophys. 1980 May;201(2):564–575. doi: 10.1016/0003-9861(80)90546-9. [DOI] [PubMed] [Google Scholar]
  2. Bastin J., Cambon N., Thompson M., Lowry O. H., Burch H. B. Change in energy reserves in different segments of the nephron during brief ischemia. Kidney Int. 1987 Jun;31(6):1239–1247. doi: 10.1038/ki.1987.137. [DOI] [PubMed] [Google Scholar]
  3. Bastin J., Sofack F., Boulekbache H., Bismuth J., Geloso J. P. Perinatal changes in adenine nucleotide content of developing rat kidney. J Dev Physiol. 1986 Apr;8(2):97–103. [PubMed] [Google Scholar]
  4. Burch H. B., Bross T. E., Brooks C. A., Cole B. R., Lowry O. H. The distribution of six enzymes of oxidative metabolism along the rat nephron. J Histochem Cytochem. 1984 Jul;32(7):731–736. doi: 10.1177/32.7.6588129. [DOI] [PubMed] [Google Scholar]
  5. Burch H. B., Kuhlman A. M., Skerjance J., Lowry O. H. Changes in patterns of enzymes of carbohydrate metabolism in the developing rat kidney. Pediatrics. 1971 Jan;47(1 Suppl):199+–199+. [PubMed] [Google Scholar]
  6. Delaval E., Andriamanantsara S., Freund N., Bastin J., Geloso J. P. Changes in carnitine-palmitoyl-transferase and carnitine-acetyl-transferase activity in rat kidney during development; effects of fasting. J Dev Physiol. 1985 Dec;7(6):365–372. [PubMed] [Google Scholar]
  7. Delaval E., Moreau E., Geloso J. P. Development of ammonia and glucose productions from glutamine in foetal rat kidney; effects of metabolic acidosis. Pflugers Arch. 1979 Feb 14;379(1):95–100. doi: 10.1007/BF00622910. [DOI] [PubMed] [Google Scholar]
  8. Geloso J. P., Basset J. C. Role of adrenal glands in development of foetal rat kidney Na-K-ATPase. Pflugers Arch. 1974 Apr 11;348(2):105–113. doi: 10.1007/BF00586473. [DOI] [PubMed] [Google Scholar]
  9. Horster M. F., Wilson P. D. Enzyme patterns in nephron ontogeny. Int J Pediatr Nephrol. 1983 Sep;4(3):133–144. [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. LeLièvre-Pégorier M., Geloso J. P. Otogeny of sugar transport in fetal rat kidney. Biol Neonate. 1980;38(1-2):16–24. doi: 10.1159/000241321. [DOI] [PubMed] [Google Scholar]
  12. Osmundsen H., Sherratt H. S. A novel mechanism for inhibition of beta-oxidation by methylenecyclopropylacetyl-CoA, a metabolite of hypoglycin. FEBS Lett. 1975 Jul 15;55(1):38–41. doi: 10.1016/0014-5793(75)80951-3. [DOI] [PubMed] [Google Scholar]
  13. Pollak J. K., Sutton R. The transport and accumulation of adenine nucleotides during mitochondrial biogenesis. Biochem J. 1980 Oct 15;192(1):75–83. doi: 10.1042/bj1920075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pollak J. K. The maturation of the inner membrane of foetal rat liver mitochondria. Biochem J. 1975 Sep;150(3):477–488. doi: 10.1042/bj1500477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Razanoelina M., Delaval E., Bastin J., Bismuth J., Freund N., Geloso J. P. Métabolisme oxydatif mitochondrial dans le rein de rat au cours de la période périnatale. C R Acad Sci III. 1987;304(10):251–254. [PubMed] [Google Scholar]
  16. Schaeverbeke J., Cheignon M. Differentiation of glomerular filter and tubular reabsorption apparatus during foetal development of the rat kidney. J Embryol Exp Morphol. 1980 Aug;58:157–175. [PubMed] [Google Scholar]
  17. Sofack F., Bastin J., Boulekbache H., Bismuth J., Delaval E., Geloso J. P. Role of catecholamines in the control of newborn kidney adenine nucleotide content. Biol Neonate. 1987;51(5):268–272. doi: 10.1159/000242663. [DOI] [PubMed] [Google Scholar]
  18. Sutton R., Pollak J. K. Hormone-initiated maturation of rat liver mitochondria after birth. Biochem J. 1980 Jan 15;186(1):361–367. doi: 10.1042/bj1860361. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES