Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jun 1;252(2):577–581. doi: 10.1042/bj2520577

Release of copper from yeast copper-thionein after S-alkylation of copper-thiolate clusters.

K Felix 1, U Weser 1
PMCID: PMC1149182  PMID: 3046608

Abstract

Our knowledge on the release of copper from Cu-thionein in biological systems is limited. Other than oxidative cleavage or direct transfer, the possibility of an alkylation mechanism seemed attractive. Iodoacetamide and methyl methanesulphonate were successfully employed to alkylate the Cu-thiolate sulphur atom of homogeneous Cu(I)-thionein from yeast. The alkylation caused a weakening of the Cu-S bonding, which led to the release of copper. After equilibrium dialysis a proportion of the released copper was found in the dialysis buffer. When iodoacetamide was used carboxymethylcysteine was detected in the protein hydrolysate. A 10-fold molar excess over cysteine was sufficient for complete alkylation, which could be conveniently monitored by c.d. at 328 and 359 nm. The reaction proceeded under both aerobic and anaerobic conditions. E.p.r. measurements of Cu2+ revealed unequivocally the complete cleavage of the Cu-thiolate bonding in less than 5 h. It is possible that this mode of copper release might be of relevance to the molecular transport of this biochemically important transition metal.

Full text

PDF
577

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernhard W. R., Vasák M., Kägi J. H. Cadmium binding and metal cluster formation in metallothionein: a differential modification study. Biochemistry. 1986 Apr 22;25(8):1975–1980. doi: 10.1021/bi00356a021. [DOI] [PubMed] [Google Scholar]
  2. Carne T., Tipping E., Ketterer B. The binding and catalytic activities of forms of ligandin after modification of its thiol groups. Biochem J. 1979 Feb 1;177(2):433–439. doi: 10.1042/bj1770433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eyem J., Sjödahl J., Sjöquist J. S-Methylation of cysteine residues in peptides and proteins with dimethylsulfate. Anal Biochem. 1976 Aug;74(2):359–368. doi: 10.1016/0003-2697(76)90217-7. [DOI] [PubMed] [Google Scholar]
  4. Hartmann H. J., Gärtner A., Weser U. Copper dependent control of the enzymic and phagocyte induced degradation of some biopolymers, a possible link to systemic inflammation. Clin Chim Acta. 1985 Oct 31;152(1-2):95–103. doi: 10.1016/0009-8981(85)90180-9. [DOI] [PubMed] [Google Scholar]
  5. Hartmann H. J., Gärtner A., Weser U. Oxidation of Cu(I)-thionein by enzymically generated H2O2. Hoppe Seylers Z Physiol Chem. 1984 Nov;365(11):1355–1359. doi: 10.1515/bchm2.1984.365.2.1355. [DOI] [PubMed] [Google Scholar]
  6. Hartmann H. J., Morpurgo L., Desideri A., Rotilio G., Weser U. Reconstitution of stellacyanin as a case of direct Cu(I) transfer between yeast copper thionein and 'blue' copper apoprotein. FEBS Lett. 1983 Feb 7;152(1):94–96. doi: 10.1016/0014-5793(83)80489-x. [DOI] [PubMed] [Google Scholar]
  7. Katznelson R., Kulka R. G. Degradation of microinjected methylated and unmethylated proteins in hepatoma tissue culture cells. J Biol Chem. 1983 Aug 25;258(16):9597–9600. [PubMed] [Google Scholar]
  8. Mehra R. K., Bremner I. Studies on the metabolism of rat liver copper-metallothionein. Biochem J. 1985 May 1;227(3):903–908. doi: 10.1042/bj2270903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Morpurgo L., Hartmann H. J., Desideri A., Weser U., Rotilio G. Yeast copper-thionein can reconstitute the Japanese-lacquer-tree (Rhus vernicifera) laccase from the Type 2-copper-depleted enzyme via a direct copper(I)-transfer mechanism. Biochem J. 1983 May 1;211(2):515–517. doi: 10.1042/bj2110515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paik W. K., Kim S. Protein methylation. Science. 1971 Oct 8;174(4005):114–119. doi: 10.1126/science.174.4005.114. [DOI] [PubMed] [Google Scholar]
  11. Rupp H., Weser U. Copper(I) and copper(II) in complexes of biochemical significance studied by X-ray photoelectron spectroscopy. Biochim Biophys Acta. 1976 Sep 28;446(1):151–165. doi: 10.1016/0005-2795(76)90107-0. [DOI] [PubMed] [Google Scholar]
  12. Rupp H., Weser U. X-ray photoelectron spectroscopy of some selenium containing amino acids. Bioinorg Chem. 1975;5(1):21–32. doi: 10.1016/s0006-3061(00)80217-3. [DOI] [PubMed] [Google Scholar]
  13. Schechinger T., Hartmann H. J., Weser U. Copper transport from Cu(I)-thionein into apo-caeruloplasmin mediated by activated leucocytes. Biochem J. 1986 Nov 15;240(1):281–283. doi: 10.1042/bj2400281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Segerbäck D., Calleman C. J., Ehrenberg L., Löfroth G., Osterman-Golkar S. Evaluation of genetic risks of alkylating agents IV. Quantitative determination of alkylated amino acids in haemoglobin as a measure of the dose after-treatment of mice with methyl methanesulfonate. Mutat Res. 1978 Jan;49(1):71–82. doi: 10.1016/0027-5107(78)90079-9. [DOI] [PubMed] [Google Scholar]
  15. Sokolowski G., Pilz W., Weser U. X-ray photoelectron spectroscopic properties of Hg-thionein. FEBS Lett. 1974 Nov 15;48(2):222–225. doi: 10.1016/0014-5793(74)80472-2. [DOI] [PubMed] [Google Scholar]
  16. Weser U., Hartmann H. J. Differently bound copper(I) in yeast Cu8-thionein. Biochim Biophys Acta. 1988 Mar 2;953(1):1–5. doi: 10.1016/0167-4838(88)90002-7. [DOI] [PubMed] [Google Scholar]
  17. Weser U., Hartmann H. J., Fretzdorff A., Strobel G. J. Homologous copper(I)-(thiolate)2-chromophores in yeast copper thionein. Biochim Biophys Acta. 1977 Aug 23;493(2):465–477. doi: 10.1016/0005-2795(77)90203-3. [DOI] [PubMed] [Google Scholar]
  18. Weser U., Mutter W., Hartmann H. J. The role of Cu(I)-thiolate clusters during the proteolysis of Cu-thionein. FEBS Lett. 1986 Mar 3;197(1-2):258–262. doi: 10.1016/0014-5793(86)80338-6. [DOI] [PubMed] [Google Scholar]
  19. Winge D. R., Miklossy K. A. Domain nature of metallothionein. J Biol Chem. 1982 Apr 10;257(7):3471–3476. [PubMed] [Google Scholar]
  20. Winge D. R., Nielson K. B., Gray W. R., Hamer D. H. Yeast metallothionein. Sequence and metal-binding properties. J Biol Chem. 1985 Nov 25;260(27):14464–14470. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES