Abstract
Radiation-inactivation studies were performed on brush-border-membrane vesicles purified from rat kidney cortex. No alteration of the structural integrity of the vesicles was apparent in electron micrographs of irradiated and unirradiated vesicles. The size distributions of the vesicles were also similar for both populations. The molecular sizes of two-brush-border-membrane enzymes, alkaline phosphatase and 5'-nucleotidase, estimated by the radiation-inactivation technique, were 104800 +/- 3500 and 89,400 +/- 1800 Da respectively. Polyacrylamide-gel-electrophoresis patterns of membrane proteins remained unaltered by the radiation treatment, except in the region of higher-molecular-mass proteins, where destruction of the proteins was visible. The molecular size of two of these proteins was estimated from their mobilities in polyacrylamide gels and was similar to the target size, estimated from densitometric scanning of the gel. Intravesicular volume, estimated by the uptake of D-glucose at equilibrium, was unaffected by irradiation. Uptake of Na+, D-glucose and phosphate were measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Na+-independent D-glucose and phosphate uptakes were totally unaffected in the dose range used (0-9 Mrad). The Na+-dependent uptake of D-glucose was studied in irradiated vesicles, and the molecular size of the transporter was found to be 288,000 Da. The size of the Na+-dependent phosphate carrier was also estimated, and a value of 234,000 Da was obtained.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beauregard G., Maret A., Salvayre R., Potier M. The radiation inactivation method as a tool to study structure-function relationships in proteins. Methods Biochem Anal. 1987;32:313–343. doi: 10.1002/9780470110539.ch6. [DOI] [PubMed] [Google Scholar]
- Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Béliveau R., Brunette M. G. The renal brush border membrane in man. Protein pattern, inorganic phosphate binding and transport: comparison with other species. Ren Physiol. 1984;7(2):65–71. [PubMed] [Google Scholar]
- Béliveau R., Strevey J. The sodium gradient induces conformational changes in the renal phosphate carrier. J Biol Chem. 1987 Dec 15;262(35):16885–16891. [PubMed] [Google Scholar]
- Béliveau R., Strévey J. Kinetic model for phosphate transport in renal brush-border membranes. Am J Physiol. 1988 Mar;254(3 Pt 2):F329–F336. doi: 10.1152/ajprenal.1988.254.3.F329. [DOI] [PubMed] [Google Scholar]
- Colbeau A., Maroux S. Integration of alkaline phosphatase in the intestinal brush border membrane. Biochim Biophys Acta. 1978 Jul 20;511(1):39–51. doi: 10.1016/0005-2736(78)90063-9. [DOI] [PubMed] [Google Scholar]
- Fulcher I. S., Ingram J., Kenny A. J. Radiation inactivation analysis of kidney microvillar peptidases. FEBS Lett. 1986 Sep 15;205(2):323–327. doi: 10.1016/0014-5793(86)80921-8. [DOI] [PubMed] [Google Scholar]
- Gmaj P., Murer H. Cellular mechanisms of inorganic phosphate transport in kidney. Physiol Rev. 1986 Jan;66(1):36–70. doi: 10.1152/physrev.1986.66.1.36. [DOI] [PubMed] [Google Scholar]
- Hammerman M. R. Phosphate transport across renal proximal tubular cell membranes. Am J Physiol. 1986 Sep;251(3 Pt 2):F385–F398. doi: 10.1152/ajprenal.1986.251.3.F385. [DOI] [PubMed] [Google Scholar]
- Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
- Hosang M., Gibbs E. M., Diedrich D. F., Semenza G. Photoaffinity labeling and identification of (a component of) the small-intestinal Na+,D-glucose transporter using 4-azidophlorizin. FEBS Lett. 1981 Aug 3;130(2):244–248. doi: 10.1016/0014-5793(81)81130-1. [DOI] [PubMed] [Google Scholar]
- Innerarity T. L., Kempner E. S., Hui D. Y., Mahley R. W. Functional unit of the low density lipoprotein receptor of fibroblasts: a 100,000-dalton structure with multiple binding sites. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4378–4382. doi: 10.1073/pnas.78.7.4378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kempner E. S., Schlegel W. Size determination of enzymes by radiation inactivation. Anal Biochem. 1979 Jan 1;92(1):2–10. doi: 10.1016/0003-2697(79)90617-1. [DOI] [PubMed] [Google Scholar]
- Kepner G. R., Macey R. I. Membrane enzyme systems. Molecular size determinations by radiation inactivation. Biochim Biophys Acta. 1968 Sep 17;163(2):188–203. doi: 10.1016/0005-2736(68)90097-7. [DOI] [PubMed] [Google Scholar]
- Kessler R. J., Vaughn D. A. Divalent metal is required for both phosphate transport and phosphate binding to phosphorin, a proteolipid isolated from brush-border membrane vesicles. J Biol Chem. 1984 Jul 25;259(14):9059–9063. [PubMed] [Google Scholar]
- Kessler R. J., Vaughn D. A., Fanestil D. D. Phosphate-binding proteolipid from brush border. J Biol Chem. 1982 Dec 10;257(23):14311–14317. [PubMed] [Google Scholar]
- Lin J. T., Da Cruz M. E., Riedel S., Kinne R. Partial purification of hog kidney sodium-D-glucose cotransport system by affinity chromatography on a phlorizin polymer. Biochim Biophys Acta. 1981 Jan 8;640(1):43–54. doi: 10.1016/0005-2736(81)90530-7. [DOI] [PubMed] [Google Scholar]
- Lin J. T., Szwarc K., Kinne R., Jung C. Y. Structural state of the Na+/D-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependent D-glucose transport. Biochim Biophys Acta. 1984 Nov 7;777(2):201–208. doi: 10.1016/0005-2736(84)90421-8. [DOI] [PubMed] [Google Scholar]
- Mizgala C. L., Quamme G. A. Renal handling of phosphate. Physiol Rev. 1985 Apr;65(2):431–466. doi: 10.1152/physrev.1985.65.2.431. [DOI] [PubMed] [Google Scholar]
- Saccomani G., Sachs G., Cuppoletti J., Jung C. Y. Target molecular weight of the gastric (H+ + K+)-ATPase functional and structural molecular size. J Biol Chem. 1981 Aug 10;256(15):7727–7729. [PubMed] [Google Scholar]
- Schäli C., Fanestil D. D. Solubilization and reconstitution of the renal phosphate transporter. Biochim Biophys Acta. 1985 Sep 25;819(1):66–74. doi: 10.1016/0005-2736(85)90196-8. [DOI] [PubMed] [Google Scholar]
- Silverman M. Glucose transport in the kidney. Biochim Biophys Acta. 1976 Dec 14;457(3-4):303–351. doi: 10.1016/0304-4157(76)90003-4. [DOI] [PubMed] [Google Scholar]
- Stevens B. R., Kempner E. S., Wright E. M. Radiation inactivation probe of membrane-bound enzymes: gamma-glutamyltranspeptidase, aminopeptidase N, and sucrase. Anal Biochem. 1986 Nov 1;158(2):278–282. doi: 10.1016/0003-2697(86)90550-6. [DOI] [PubMed] [Google Scholar]
- Szczepanska-Konkel M., Yusufi A. N., VanScoy M., Webster S. K., Dousa T. P. Phosphonocarboxylic acids as specific inhibitors of Na+-dependent transport of phosphate across renal brush border membrane. J Biol Chem. 1986 May 15;261(14):6375–6383. [PubMed] [Google Scholar]
- Takahashi M., Malathi P., Preiser H., Jung C. Y. Radiation inactivation studies on the rabbit kidney sodium-dependent glucose transporter. J Biol Chem. 1985 Sep 5;260(19):10551–10556. [PubMed] [Google Scholar]
- Turner R. J., Kempner E. S. Radiation inactivation studies of the renal brush-border membrane phlorizin-binding protein. J Biol Chem. 1982 Sep 25;257(18):10794–10797. [PubMed] [Google Scholar]
- Verkman A. S., Dix J. A., Seifter J. L., Skorecki K. L., Jung C. Y., Ausiello D. A. Radiation inactivation studies of renal brush border water and urea transport. Am J Physiol. 1985 Dec;249(6 Pt 2):F806–F812. doi: 10.1152/ajprenal.1985.249.6.F806. [DOI] [PubMed] [Google Scholar]


