Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jun 15;252(3):897–900. doi: 10.1042/bj2520897

Studies on the genetic linkage of bilirubin and androsterone UDP-glucuronyltransferases by cross-breeding of two mutant rat strains.

F Nagai 1, H Homma 1, H Tanase 1, M Matsui 1
PMCID: PMC1149232  PMID: 3138978

Abstract

Gunn rats, which have defects in bilirubin and 4-nitrophenol UDP-glucuronyltransferases (GT), were crossed with LA Wistar rats with a defect in androsterone GT. The F1 hybrids showed normal GT activities towards androsterone, bilirubin and 4-nitrophenol, demonstrating that Gunn and LA ('low activity') Wistar rats inherit a homozygous dominant trait for androsterone GT and bilirubin GT respectively. The F2 progeny showed four different combinations of bilirubin and androsterone GT activities: defects in both GT activities, a single defect in bilirubin GT activity, a single defect in androsterone GT activity and two normal GT activities. They were segregated in the approximate ratio of 1:3:3:9, which is compatible with Mendel's Principle of Independent Assortment. These results provide evidence that androsterone GT and bilirubin GT are located on different chromosomes. In the F2 generation, defective bilirubin and 4-nitrophenol GT activities were not segregated, indicating that these two mutant genes are closely linked on the same chromosome.

Full text

PDF
897

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Castle W. E., King H. D. LINKAGE STUDIES OF THE RAT (RATTUS NORVEGICUS): III. Proc Natl Acad Sci U S A. 1940 Sep 15;26(9):578–580. doi: 10.1073/pnas.26.9.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Castle W. E. The Domestication of the Rat. Proc Natl Acad Sci U S A. 1947 May;33(5):109–117. doi: 10.1073/pnas.33.5.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corser R. B., Coughtrie M. W., Jackson M. R., Burchell B. The molecular basis of the inherited deficiency of androsterone UDP-glucuronyltransferase in Wistar rats. FEBS Lett. 1987 Mar 23;213(2):448–452. doi: 10.1016/0014-5793(87)81540-5. [DOI] [PubMed] [Google Scholar]
  4. Coughtrie M. W., Burchell B., Shepherd I. M., Bend J. R. Defective induction of phenol glucuronidation by 3-methylcholanthrene in Gunn rats is due to the absence of a specific UDP-glucuronosyltransferase isoenzyme. Mol Pharmacol. 1987 Jun;31(6):585–591. [PubMed] [Google Scholar]
  5. Falany C. N., Tephly T. R. Separation, purification and characterization of three isoenzymes of UDP-glucuronyltransferase from rat liver microsomes. Arch Biochem Biophys. 1983 Nov;227(1):248–258. doi: 10.1016/0003-9861(83)90368-5. [DOI] [PubMed] [Google Scholar]
  6. Heirwegh K. P., Van de Vijver M., Fevery J. Assay and properties of dititonin-activated bilirubin uridine diphosphate glucuronyltransferase from rat liver. Biochem J. 1972 Sep;129(3):605–618. doi: 10.1042/bj1290605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iyanagi T., Haniu M., Sogawa K., Fujii-Kuriyama Y., Watanabe S., Shively J. E., Anan K. F. Cloning and characterization of cDNA encoding 3-methylcholanthrene inducible rat mRNA for UDP-glucuronosyltransferase. J Biol Chem. 1986 Nov 25;261(33):15607–15614. [PubMed] [Google Scholar]
  8. Jackson M. R., Burchell B. The full length coding sequence of rat liver androsterone UDP-glucuronyltransferase cDNA and comparison with other members of this gene family. Nucleic Acids Res. 1986 Jan 24;14(2):779–795. doi: 10.1093/nar/14.2.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Leyten R., Vroemen J. P., Blanckaert N., Heirwegh K. P. The congenic normal R/APfd and jaundiced R/APfd-j/j rat strains: a new animal model of hereditary non-haemolytic unconjugated hyperbilirubinaemia due to defective bilirubin conjugation. Lab Anim. 1986 Oct;20(4):335–342. doi: 10.1258/002367786780808758. [DOI] [PubMed] [Google Scholar]
  11. Mackenzie P. I. Rat liver UDP-glucuronosyltransferase. Identification of cDNAs encoding two enzymes which glucuronidate testosterone, dihydrotestosterone, and beta-estradiol. J Biol Chem. 1987 Jul 15;262(20):9744–9749. [PubMed] [Google Scholar]
  12. Matsui M., Nagai F., Aoyagi S. Strain differences in rat liver (UDP-glucuronyltransferase activity towards androsterone. Biochem J. 1979 Jun 1;179(3):483–487. doi: 10.1042/bj1790483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matsui M., Nagai F. Genetic deficiency of androsterone UDP-glucuronosyltransferase activity in Wistar rats is due to the loss of enzyme protein. Biochem J. 1986 Feb 15;234(1):139–144. doi: 10.1042/bj2340139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsui M., Nagai F., Suzuki E., Okada M. Structure-activity relationships of nitrosamines and nitramines which stimulate UDP-glucuronosyltransferase activities in vitro. Biochem Pharmacol. 1984 Aug 15;33(16):2647–2651. doi: 10.1016/0006-2952(84)90639-7. [DOI] [PubMed] [Google Scholar]
  15. Matsui M., Watanabe H. K. Classification and genetic expression of Wistar rats with high and low hepatic microsomal UDP-glucuronosyltransferase activity towards androsterone. Biochem J. 1982 Jan 15;202(1):171–174. doi: 10.1042/bj2020171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nagai F., Takahashi M., Homma H., Tanase H., Matsui M. A comparison of uridine diphosphate-glucuronosyl-transferase and other drug metabolizing enzyme activities between two mutant strains of Wistar rats with a genetic deficiency in bilirubin or androsterone glucuronidation. J Pharmacobiodyn. 1987 Aug;10(8):421–426. doi: 10.1248/bpb1978.10.421. [DOI] [PubMed] [Google Scholar]
  17. Nakata D., Zakim D., Vessey D. A. Defective function of a microsomal UDP-glucuronyltransferase in Gunn rats. Proc Natl Acad Sci U S A. 1976 Feb;73(2):289–292. doi: 10.1073/pnas.73.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roy Chowdhury J., Roy Chowdhury N., Falany C. N., Tephly T. R., Arias I. M. Isolation and characterization of multiple forms of rat liver UDP-glucuronate glucuronosyltransferase. Biochem J. 1986 Feb 1;233(3):827–837. doi: 10.1042/bj2330827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Roy Chowdhury N., Gross F., Moscioni A. D., Kram M., Arias I. M., Roy Chowdhury J. Isolation of multiple normal and functionally defective forms of uridine diphosphate-glucuronosyltransferase from inbred Gunn rats. J Clin Invest. 1987 Feb;79(2):327–334. doi: 10.1172/JCI112816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scragg I., Celier C., Burchell B. Congenital jaundice in rats due to the absence of hepatic bilirubin UDP-glucuronyltransferase enzyme protein. FEBS Lett. 1985 Apr 8;183(1):37–42. doi: 10.1016/0014-5793(85)80949-2. [DOI] [PubMed] [Google Scholar]
  21. Siest G., Antoine B., Fournel S., Magdalou J., Thomassin J. The glucuronosyltransferases: what progress can pharmacologists expect from molecular biology and cellular enzymology? Biochem Pharmacol. 1987 Apr 1;36(7):983–989. doi: 10.1016/0006-2952(87)90403-5. [DOI] [PubMed] [Google Scholar]
  22. Yeary R. A., Grothaus R. H. The Gunn rat as an animal model in comparative medicine. Lab Anim Sci. 1971 Jun;21(3):362–366. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES