Abstract
Pig kidney diamine oxidase (DAO) was found to contain 5% (w/w) natural hexose, 3.25% glucosamine, 2.61% N-acetylglucosamine and 0.25% N-acetylneuraminic acid. The enzyme exhibited strong affinity towards concanavalin A (Con A) with a stoichiometry of 1:4.6. The kinetics of interaction approached an apparent first-order rate, with a rate constant (Kapp.) value of 1.5 x 10(-2) min-1. The enzyme reduced with dithiothreitol followed by alkylation with iodoacetamide showed an increase in the stoichiometry of the Con A-DAO interaction. Similarly arginine modification by phenylglyoxal caused decreased affinity, with an altered Kapp. value of 9.09 x 10(-3) min-1. The results suggest that, besides the carbohydrate content, the protein moiety of the enzyme also plays a significant role in the Con A-DAO interaction.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bardsley W. G., Ashford J. S. Inhibition of pig kidney diamine oxidase by substrate analogues. Biochem J. 1972 Jun;128(2):253–263. doi: 10.1042/bj1280253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bardsley W. G., Childs R. E. Inhibition of enzymes by metal ion-chelating reagents. Theory and new graphical methods of study. Biochem J. 1974 Jan;137(1):55–60. doi: 10.1042/bj1370055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borrebaeck C., Mattiasson B. A study of structurally related binding properties of concanavalin A using differential scanning calorimetry. Eur J Biochem. 1980;107(1):67–71. doi: 10.1111/j.1432-1033.1980.tb04625.x. [DOI] [PubMed] [Google Scholar]
- Collier G. E., Nishimura J. S. Evidence for a second histidine at the active site of succinyl-CoA synthetase from Escherichia coli. J Biol Chem. 1979 Nov 10;254(21):10925–10930. [PubMed] [Google Scholar]
- Davey M. W., Sulkowski E., Carter W. A. Binding of human fibroblast interferon to concanavalin A-agarose. Involvement of carbohydrate recognition and hydrophobic interaction. Biochemistry. 1976 Feb 10;15(3):704–713. doi: 10.1021/bi00648a039. [DOI] [PubMed] [Google Scholar]
- Dooley D. M., Golnik K. C. Spectroscopic and kinetics studies of the inhibition of pig kidney diamine oxidase by anions. J Biol Chem. 1983 Apr 10;258(7):4245–4248. [PubMed] [Google Scholar]
- Khan I. A., Ali R. On the conformational state of photoinactivated tyrosinase: possibility of structural segments in the enzyme molecule. J Radiat Res. 1985 Mar;26(1):109–122. doi: 10.1269/jrr.26.109. [DOI] [PubMed] [Google Scholar]
- Kluetz M. D., Schmidt P. G. Diamine oxidase: molecular weight and subunit analysis. Biochem Biophys Res Commun. 1977 May 9;76(1):40–45. doi: 10.1016/0006-291x(77)91665-5. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Montelaro R. C., West M., Ivey M. Effects of common radioiodination procedures on the binding of glycoproteins to immobilized lectins. Biochem Biophys Res Commun. 1983 Jan 14;110(1):103–107. doi: 10.1016/0006-291x(83)91266-4. [DOI] [PubMed] [Google Scholar]
- REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
- Takahashi K. Further studies on the reactions of phenylglyoxal and related reagents with proteins. J Biochem. 1977 Feb;81(2):403–414. doi: 10.1093/oxfordjournals.jbchem.a131472. [DOI] [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
- Waseem A., Anwar K. Glycoprotein-concanavalin A interaction: role of protein conformation in the specific interaction of glycoprotein with concanavalin A. Biomed Biochim Acta. 1987;46(1):23–32. [PubMed] [Google Scholar]

