Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jul 1;253(1):103–107. doi: 10.1042/bj2530103

The glycoprotein nature of pig kidney diamine oxidase. Role of disulphide groups and arginine residues in the concanavalin A-diamine oxidase interaction.

M A Shah 1, R Ali 1
PMCID: PMC1149263  PMID: 3138980

Abstract

Pig kidney diamine oxidase (DAO) was found to contain 5% (w/w) natural hexose, 3.25% glucosamine, 2.61% N-acetylglucosamine and 0.25% N-acetylneuraminic acid. The enzyme exhibited strong affinity towards concanavalin A (Con A) with a stoichiometry of 1:4.6. The kinetics of interaction approached an apparent first-order rate, with a rate constant (Kapp.) value of 1.5 x 10(-2) min-1. The enzyme reduced with dithiothreitol followed by alkylation with iodoacetamide showed an increase in the stoichiometry of the Con A-DAO interaction. Similarly arginine modification by phenylglyoxal caused decreased affinity, with an altered Kapp. value of 9.09 x 10(-3) min-1. The results suggest that, besides the carbohydrate content, the protein moiety of the enzyme also plays a significant role in the Con A-DAO interaction.

Full text

PDF
103

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardsley W. G., Ashford J. S. Inhibition of pig kidney diamine oxidase by substrate analogues. Biochem J. 1972 Jun;128(2):253–263. doi: 10.1042/bj1280253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bardsley W. G., Childs R. E. Inhibition of enzymes by metal ion-chelating reagents. Theory and new graphical methods of study. Biochem J. 1974 Jan;137(1):55–60. doi: 10.1042/bj1370055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borrebaeck C., Mattiasson B. A study of structurally related binding properties of concanavalin A using differential scanning calorimetry. Eur J Biochem. 1980;107(1):67–71. doi: 10.1111/j.1432-1033.1980.tb04625.x. [DOI] [PubMed] [Google Scholar]
  4. Collier G. E., Nishimura J. S. Evidence for a second histidine at the active site of succinyl-CoA synthetase from Escherichia coli. J Biol Chem. 1979 Nov 10;254(21):10925–10930. [PubMed] [Google Scholar]
  5. Davey M. W., Sulkowski E., Carter W. A. Binding of human fibroblast interferon to concanavalin A-agarose. Involvement of carbohydrate recognition and hydrophobic interaction. Biochemistry. 1976 Feb 10;15(3):704–713. doi: 10.1021/bi00648a039. [DOI] [PubMed] [Google Scholar]
  6. Dooley D. M., Golnik K. C. Spectroscopic and kinetics studies of the inhibition of pig kidney diamine oxidase by anions. J Biol Chem. 1983 Apr 10;258(7):4245–4248. [PubMed] [Google Scholar]
  7. Khan I. A., Ali R. On the conformational state of photoinactivated tyrosinase: possibility of structural segments in the enzyme molecule. J Radiat Res. 1985 Mar;26(1):109–122. doi: 10.1269/jrr.26.109. [DOI] [PubMed] [Google Scholar]
  8. Kluetz M. D., Schmidt P. G. Diamine oxidase: molecular weight and subunit analysis. Biochem Biophys Res Commun. 1977 May 9;76(1):40–45. doi: 10.1016/0006-291x(77)91665-5. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Montelaro R. C., West M., Ivey M. Effects of common radioiodination procedures on the binding of glycoproteins to immobilized lectins. Biochem Biophys Res Commun. 1983 Jan 14;110(1):103–107. doi: 10.1016/0006-291x(83)91266-4. [DOI] [PubMed] [Google Scholar]
  11. REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
  12. Takahashi K. Further studies on the reactions of phenylglyoxal and related reagents with proteins. J Biochem. 1977 Feb;81(2):403–414. doi: 10.1093/oxfordjournals.jbchem.a131472. [DOI] [PubMed] [Google Scholar]
  13. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  14. Waseem A., Anwar K. Glycoprotein-concanavalin A interaction: role of protein conformation in the specific interaction of glycoprotein with concanavalin A. Biomed Biochim Acta. 1987;46(1):23–32. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES