Abstract
The direct effects of clofibrate analogues on carnitine acyltransferase activities and fatty acid metabolism were studied in cultured hepatocytes. Rat hepatocytes cultured with bezafibrate or ciprofibrate (0.1-10 micrograms/ml) for 48 h had increased activities of carnitine acetyltransferase (CAT; 4-6-fold) and carnitine palmitoyltransferase (CPT; 12-34%). The increase in CAT was higher in hepatocytes from the periportal zone (440%) of rat liver compared with cells from the perivenous zone (266%). In human hepatocytes, in contrast with rat, the fibrates did not cause a marked increase in CAT activity. The effects of fibrates on palmitate metabolism were dependent on the carnitine status. In the presence of exogenous carnitine (1 mM), rat hepatocytes cultured with bezafibrate had higher rates of total palmitate metabolism (29-34%) without increased partitioning of palmitate towards beta-oxidation, relative to control cultures. At low endogenous carnitine concentrations, cells cultured with bezafibrate had a greater increase in palmitate metabolism, esterification and cellular accumulation of triacylglycerol compared with the corresponding increases in the presence of carnitine. The changes in palmitate metabolism at either high or low carnitine concentrations were small in comparison with the changes in CAT activity. It is concluded that the increase in hepatic carnitine that occurs in vivo after fibrate feeding probably plays the major role in the changes in partitioning of fatty acid between beta-oxidation and esterification.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams L. L., Webb W. W., Fallon H. J. Inhibition of hepatic triglyceride formation by clofibrate. J Clin Invest. 1971 Nov;50(11):2339–2346. doi: 10.1172/JCI106732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Chowdhury M. H., Alberti K. G. Regulation of ketogenesis, gluconeogenesis and the mitochondrial redox state by dexamethasone in hepatocyte monolayer cultures. Biochem J. 1986 Nov 1;239(3):593–601. doi: 10.1042/bj2390593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Chowdhury M. H., Davis S. N., Alberti K. G. Regulation of ketogenesis, gluconeogenesis, and glycogen synthesis by insulin and proinsulin in rat hepatocyte monolayer cultures. Diabetes. 1986 Nov;35(11):1286–1293. doi: 10.2337/diab.35.11.1286. [DOI] [PubMed] [Google Scholar]
- Ball M. R., Gumaa K. A., McLean P. Effect of clofibrate on the CoA thioester profile in rat liver. Biochem Biophys Res Commun. 1979 Mar 30;87(2):489–496. doi: 10.1016/0006-291x(79)91822-9. [DOI] [PubMed] [Google Scholar]
- Bieber L. L., Abraham T., Helmrath T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem. 1972 Dec;50(2):509–518. doi: 10.1016/0003-2697(72)90061-9. [DOI] [PubMed] [Google Scholar]
- Bieri F., Bentley P., Waechter F., Stäubli W. Use of primary cultures of adult rat hepatocytes to investigate mechanisms of action of nafenopin, a hepatocarcinogenic peroxisome proliferator. Carcinogenesis. 1984 Aug;5(8):1033–1039. doi: 10.1093/carcin/5.8.1033. [DOI] [PubMed] [Google Scholar]
- Blümcke S., Schwartzkopff W., Lobeck H., Edmondson N. A., Prentice D. E., Blane G. F. Influence of fenofibrate on cellular and subcellular liver structure in hyperlipidemic patients. Atherosclerosis. 1983 Jan;46(1):105–116. doi: 10.1016/0021-9150(83)90169-7. [DOI] [PubMed] [Google Scholar]
- Christiansen R. Z., Osmundsen H., Borrebaek B., Bremer J. The effects of clofibrate feeding on the metabolism of palmitate and erucate in isolated hepatocytes. Lipids. 1978 Jul;13(7):487–491. doi: 10.1007/BF02533618. [DOI] [PubMed] [Google Scholar]
- Christiansen R. Z. Regulation of palmitate metabolism by carnitine and glucagon in hepatocytes isolated from fasted and carbohydrate refed rats. Biochim Biophys Acta. 1977 Aug 24;488(2):249–262. doi: 10.1016/0005-2760(77)90182-5. [DOI] [PubMed] [Google Scholar]
- Christiansen R. Z. The effect of clofibrate-feeding on hepatic fatty acid metabolism. Biochim Biophys Acta. 1978 Sep 28;530(3):314–324. doi: 10.1016/0005-2760(78)90151-0. [DOI] [PubMed] [Google Scholar]
- De La Iglesia F. A., Lewis J. E., Buchanan R. A., Marcus E. L., McMahon G. Light and electron microscopy of liver in hyperlipoproteinemic patients under long-term gemfibrozil treatment. Atherosclerosis. 1982 May;43(1):19–37. doi: 10.1016/0021-9150(82)90096-x. [DOI] [PubMed] [Google Scholar]
- Furukawa K., Mochizuki Y., Sawada N. Properties of peroxisomes and their induction by clofibrate in normal adult rat hepatocytes in primary culture. In Vitro. 1984 Jul;20(7):573–584. doi: 10.1007/BF02639773. [DOI] [PubMed] [Google Scholar]
- Gariot P., Barrat E., Drouin P., Genton P., Pointel J. P., Foliguet B., Kolopp M., Debry G. Morphometric study of human hepatic cell modifications induced by fenofibrate. Metabolism. 1987 Mar;36(3):203–210. doi: 10.1016/0026-0495(87)90177-6. [DOI] [PubMed] [Google Scholar]
- Hanefeld M., Kemmer C., Leonhardt W., Kunze K. D., Jaross W., Haller H. Effects of p-chlorophenoxyisobutyric acid (CPIB) on the human liver. Atherosclerosis. 1980 Jun;36(2):159–172. doi: 10.1016/0021-9150(80)90225-7. [DOI] [PubMed] [Google Scholar]
- Harano Y., Kashiwagi A., Kojima H., Suzuki M., Hashimoto T., Shigeta Y. Phosphorylation of carnitine palmitoyltransferase and activation by glucagon in isolated rat hepatocytes. FEBS Lett. 1985 Sep 2;188(2):267–272. doi: 10.1016/0014-5793(85)80385-9. [DOI] [PubMed] [Google Scholar]
- Hertz R., Bar-Tana J. Prevention of peroxisomal proliferation by carnitine palmitoyltransferase inhibitors in cultured rat hepatocytes and in vivo. Biochem J. 1987 Jul 15;245(2):387–392. doi: 10.1042/bj2450387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ide T., Oku H., Sugano M. Reciprocal responses to clofibrate in ketogenesis and triglyceride and cholesterol secretion in isolated rat liver. Metabolism. 1982 Oct;31(10):1065–1072. doi: 10.1016/0026-0495(82)90153-6. [DOI] [PubMed] [Google Scholar]
- Kera Y., Sippel H. W., Penttilä K. E., Lindros K. O. Acinar distribution of glutathione-dependent detoxifying enzymes. Low glutathione peroxidase activity in perivenous hepatocytes. Biochem Pharmacol. 1987 Jun 15;36(12):2003–2006. doi: 10.1016/0006-2952(87)90500-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarow P. B. Three hypolipidemic drugs increase hepatic palmitoyl-coenzyme A oxidation in the rat. Science. 1977 Aug 5;197(4303):580–581. doi: 10.1126/science.195342. [DOI] [PubMed] [Google Scholar]
- Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
- Mannaerts G. P., Thomas J., Debeer L. J., McGarry J. D., Foster D. W. Hepatic fatty acid oxidation and ketogenesis after clofibrate treatment. Biochim Biophys Acta. 1978 May 25;529(2):201–211. doi: 10.1016/0005-2760(78)90063-2. [DOI] [PubMed] [Google Scholar]
- Markwell M. A., Bieber L. L., Tolbert N. E. Differential increase of hepatic peroxisomal, mitochondrial and microsomal carnitine acyltransferases in clofibrate-fed rats. Biochem Pharmacol. 1977 Sep 15;26(18):1697–1702. doi: 10.1016/0006-2952(77)90147-2. [DOI] [PubMed] [Google Scholar]
- Megraw R. E., Dunn D. E., Biggs H. G. Manual and continuous-flow colorimetry of triacylglycerols by a fully enzymic method. Clin Chem. 1979 Feb;25(2):273–278. [PubMed] [Google Scholar]
- Mittal B., Kurup C. K. Induction of carnitine acetyltransferase by clofibrate in rat liver. Biochem J. 1981 Jan 15;194(1):249–255. doi: 10.1042/bj1940249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozasa H., Miyazawa S., Furuta S., Osumi T., Hashimoto T. Induction of peroxisomal beta-oxidation enzymes in primary cultured rat hepatocytes by clofibric acid. J Biochem. 1985 May;97(5):1273–1278. doi: 10.1093/oxfordjournals.jbchem.a135178. [DOI] [PubMed] [Google Scholar]
- Packard C. J., Clegg R. J., Dominiczak M. H., Lorimer A. R., Shepherd J. Effects of bezafibrate on apolipoprotein B metabolism in type III hyperlipoproteinemic subjects. J Lipid Res. 1986 Sep;27(9):930–938. [PubMed] [Google Scholar]
- Pande S. V., Parvin R. Clofibrate enhancement of mitochondrial carnitine transport system of rat liver and augmentation of liver carnitine and gamma-butyrobetaine hydroxylase activity by thyroxine. Biochim Biophys Acta. 1980 Mar 21;617(3):363–370. doi: 10.1016/0005-2760(80)90002-8. [DOI] [PubMed] [Google Scholar]
- Paul H. S., Adibi S. A. Paradoxical effects of clofibrate on liver and muscle metabolism in rats. Induction of myotonia and alteration of fatty acid and glucose oxidation. J Clin Invest. 1979 Aug;64(2):405–412. doi: 10.1172/JCI109476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quistorff B. Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. Biochem J. 1985 Jul 1;229(1):221–226. doi: 10.1042/bj2290221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholz R., Schwabe U., Soboll S. Influence of fatty acids on energy metabolism. 1. Stimulation of oxygen consumption, ketogenesis and CO2 production following addition of octanoate and oleate in perfused rat liver. Eur J Biochem. 1984 May 15;141(1):223–230. doi: 10.1111/j.1432-1033.1984.tb08179.x. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
- Shepherd J., Packard C. J. Pharmacological modification of lipoprotein metabolism. Biochem Soc Trans. 1987 Apr;15(2):199–201. doi: 10.1042/bst0150199. [DOI] [PubMed] [Google Scholar]
- Solberg H. E., Aas M., Daae L. N. The activity of the different carnitine acyltransferases in the liver of clofibrate-fed rats. Biochim Biophys Acta. 1972 Nov 30;280(3):434–439. doi: 10.1016/0005-2760(72)90249-4. [DOI] [PubMed] [Google Scholar]
- Svoboda D. J., Azarnoff D. L. Response of hepatic microbodies to a hypolipidemic agent, ethyl chlorophenoxyisobutyrate (CPIB). J Cell Biol. 1966 Aug;30(2):442–450. doi: 10.1083/jcb.30.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voltti H., Savolainen M. J., Jauhonen V. P., Hassinen I. E. Clofibrate-induced increase in coenzyme A concentration in rat tissues. Biochem J. 1979 Jul 15;182(1):95–102. doi: 10.1042/bj1820095. [DOI] [PMC free article] [PubMed] [Google Scholar]