Abstract
Culture of rat hepatocytes with etomoxir, an inhibitor of carnitine palmitoyltransferase I (CPT I), for 48 h, resulted in increased carnitine acetyltransferase (CAT) activity (74%), a marked decrease in CPT activity (82%) measured in detergent extracts, and increased activities of glucose-6-phosphate dehydrogenase (227%) and fructose-1,6-bisphosphatase (65%). Changes in CAT and CPT activities were not observed after 4 h culture with etomoxir. When hepatocytes were cultured with etomoxir and benzafibrate (a hypolipidaemic analogue of clofibrate) for 48 h, etomoxir prevented the 5-fold increase in CAT activity caused by bezafibrate, whereas bezafibrate suppressed the increase in glucose-6-phosphate dehydrogenase and fructose-bisphosphatase caused by etomoxir. However, bezafibrate did not prevent the suppression of CPT activity by etomoxir. Etomoxir inhibited palmitate beta-oxidation and ketogenesis after short-term (0-4 h) and long-term (48 h) exposure, but it caused accumulation of triacylglycerol in hepatocytes only after short-term exposure (0-4 h). These effects of etomoxir on fatty acid metabolism and suppression of CPT (after 48 h) were similar in periportal and perivenous hepatocytes, but the increases in CAT and glucose-6-phosphate dehydrogenase activities were higher in periportal than in perivenous cells. The effects of CPT I inhibitors on CAT activity and long-term suppression of CPT activity are probably mediated by independent mechanisms.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L., Chowdhury M. H., Alberti K. G. Regulation of ketogenesis, gluconeogenesis and the mitochondrial redox state by dexamethasone in hepatocyte monolayer cultures. Biochem J. 1986 Nov 1;239(3):593–601. doi: 10.1042/bj2390593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Chowdhury M. H., Davis S. N., Alberti K. G. Regulation of ketogenesis, gluconeogenesis, and glycogen synthesis by insulin and proinsulin in rat hepatocyte monolayer cultures. Diabetes. 1986 Nov;35(11):1286–1293. doi: 10.2337/diab.35.11.1286. [DOI] [PubMed] [Google Scholar]
- Ball M. R., Gumaa K. A., McLean P. Effect of clofibrate on the CoA thioester profile in rat liver. Biochem Biophys Res Commun. 1979 Mar 30;87(2):489–496. doi: 10.1016/0006-291x(79)91822-9. [DOI] [PubMed] [Google Scholar]
- Becker C. M., Harris R. A. Influence of valproic acid on hepatic carbohydrate and lipid metabolism. Arch Biochem Biophys. 1983 Jun;223(2):381–392. doi: 10.1016/0003-9861(83)90602-1. [DOI] [PubMed] [Google Scholar]
- Bieri F., Bentley P., Waechter F., Stäubli W. Use of primary cultures of adult rat hepatocytes to investigate mechanisms of action of nafenopin, a hepatocarcinogenic peroxisome proliferator. Carcinogenesis. 1984 Aug;5(8):1033–1039. doi: 10.1093/carcin/5.8.1033. [DOI] [PubMed] [Google Scholar]
- Bone A. J., Sherratt H. S., Turnbull D. M., Osmundsen H. Increased activity of peroxisomal beta-oxidation in rat liver caused by ethyl 2(5(4-chlorophenyl)pentyl)-oxiran-2-carboxylate: an inhibitor of mitochondrial beta-oxidation. Biochem Biophys Res Commun. 1982 Jan 29;104(2):708–712. doi: 10.1016/0006-291x(82)90694-5. [DOI] [PubMed] [Google Scholar]
- Bronfman M., Amigo L., Morales M. N. Activation of hypolipidaemic drugs to acyl-coenzyme A thioesters. Biochem J. 1986 Nov 1;239(3):781–784. doi: 10.1042/bj2390781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
- Furukawa K., Mochizuki Y., Sawada N. Properties of peroxisomes and their induction by clofibrate in normal adult rat hepatocytes in primary culture. In Vitro. 1984 Jul;20(7):573–584. doi: 10.1007/BF02639773. [DOI] [PubMed] [Google Scholar]
- Gerondaes P., Alberti K. G., Agius L. Fatty acid metabolism in hepatocytes cultured with hypolipidaemic drugs. Role of carnitine. Biochem J. 1988 Jul 1;253(1):161–167. doi: 10.1042/bj2530161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hertz R., Arnon J., Bar-Tana J. The effect of bezafibrate and long-chain fatty acids on peroxisomal activities in cultured rat hepatocytes. Biochim Biophys Acta. 1985 Sep 11;836(2):192–200. doi: 10.1016/0005-2760(85)90066-9. [DOI] [PubMed] [Google Scholar]
- Hertz R., Bar-Tana J. Prevention of peroxisomal proliferation by carnitine palmitoyltransferase inhibitors in cultured rat hepatocytes and in vivo. Biochem J. 1987 Jul 15;245(2):387–392. doi: 10.1042/bj2450387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess R., Stäubli W., Riess W. Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature. 1965 Nov 27;208(5013):856–858. doi: 10.1038/208856a0. [DOI] [PubMed] [Google Scholar]
- Inestrosa N. C., Bronfman M., Leighton F. Detection of peroxisomal fatty acyl-coenzyme A oxidase activity. Biochem J. 1979 Sep 15;182(3):779–788. doi: 10.1042/bj1820779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kera Y., Sippel H. W., Penttilä K. E., Lindros K. O. Acinar distribution of glutathione-dependent detoxifying enzymes. Low glutathione peroxidase activity in perivenous hepatocytes. Biochem Pharmacol. 1987 Jun 15;36(12):2003–2006. doi: 10.1016/0006-2952(87)90500-4. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lund H. Carnitine palmitoyltransferase: characterization of a labile detergent-extracted malonyl-CoA-sensitive enzyme from rat liver mitochondria. Biochim Biophys Acta. 1987 Mar 13;918(1):67–75. doi: 10.1016/0005-2760(87)90010-5. [DOI] [PubMed] [Google Scholar]
- Ozasa H., Miyazawa S., Furuta S., Osumi T., Hashimoto T. Induction of peroxisomal beta-oxidation enzymes in primary cultured rat hepatocytes by clofibric acid. J Biochem. 1985 May;97(5):1273–1278. doi: 10.1093/oxfordjournals.jbchem.a135178. [DOI] [PubMed] [Google Scholar]
- Pande S. V., Parvin R. Clofibrate enhancement of mitochondrial carnitine transport system of rat liver and augmentation of liver carnitine and gamma-butyrobetaine hydroxylase activity by thyroxine. Biochim Biophys Acta. 1980 Mar 21;617(3):363–370. doi: 10.1016/0005-2760(80)90002-8. [DOI] [PubMed] [Google Scholar]
- Pösö A. R., Penttilä K. E., Suolinna E. M., Lindros K. O. Urea synthesis in freshly isolated and in cultured periportal and perivenous hepatocytes. Biochem J. 1986 Oct 15;239(2):263–267. doi: 10.1042/bj2390263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quistorff B. Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. Biochem J. 1985 Jul 1;229(1):221–226. doi: 10.1042/bj2290221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy J. K., Krishnakantha T. P. Hepatic peroxisome proliferation: induction by two novel compounds structurally unrelated to clofibrate. Science. 1975 Nov 21;190(4216):787–789. doi: 10.1126/science.1198095. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
- Solberg H. E., Aas M., Daae L. N. The activity of the different carnitine acyltransferases in the liver of clofibrate-fed rats. Biochim Biophys Acta. 1972 Nov 30;280(3):434–439. doi: 10.1016/0005-2760(72)90249-4. [DOI] [PubMed] [Google Scholar]
- Svoboda D. J., Azarnoff D. L. Response of hepatic microbodies to a hypolipidemic agent, ethyl chlorophenoxyisobutyrate (CPIB). J Cell Biol. 1966 Aug;30(2):442–450. doi: 10.1083/jcb.30.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swartzentruber M. S., Harris R. A. Inhibition of metabolic processes by coenzyme-A-sequestering aromatic acids. Prevention by para-chloro- and para-nitrobenzoic acids. Biochem Pharmacol. 1987 Oct 1;36(19):3147–3153. doi: 10.1016/0006-2952(87)90625-3. [DOI] [PubMed] [Google Scholar]
- Turnbull D. M., Bartlett K., Younan S. I., Sherratt H. S. The effects of 2[5(4-chlorophenyl)pentyl]oxirane-2-carbonyl-Co-A on mitochondrial oxidations. Biochem Pharmacol. 1984 Feb 1;33(3):475–481. doi: 10.1016/0006-2952(84)90243-0. [DOI] [PubMed] [Google Scholar]
- Woeltje K. F., Kuwajima M., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. II. Use of detergents and antibodies. J Biol Chem. 1987 Jul 15;262(20):9822–9827. [PubMed] [Google Scholar]
- Wolf H. P., Engel D. W. Decrease of fatty acid oxidation, ketogenesis and gluconeogenesis in isolated perfused rat liver by phenylalkyl oxirane carboxylate (B 807-27) due to inhibition of CPT I (EC 2.3.1.21). Eur J Biochem. 1985 Jan 15;146(2):359–363. doi: 10.1111/j.1432-1033.1985.tb08661.x. [DOI] [PubMed] [Google Scholar]
