Abstract
The effects of feeding the peroxisome proliferators ciprofibrate (a hypolipidaemic analogue of clofibrate) or POCA (2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate) (an inhibitor of CPT I) to rats for 5 days on the distribution of carnitine and acylcarnitine esters between liver, plasma and muscle and on hepatic CoA concentrations (free and acylated) and activities of carnitine acetyltransferase and acyl-CoA hydrolases were determined. Ciprofibrate and POCA increased hepatic [total CoA] by 2 and 2.5 times respectively, and [total carnitine] by 4.4 and 1.9 times respectively, but decreased plasma [carnitine] by 36-46%. POCA had no effect on either urinary excretion of acylcarnitine esters or [acylcarnitine] in skeletal muscle. By contrast, ciprofibrate decreased [acylcarnitine] and [total carnitine] in muscle. In liver, ciprofibrate increased the [carnitine]/[CoA] ratio and caused a larger increase in [acylcarnitine] (7-fold) than in [carnitine] (4-fold), thereby increasing the [short-chain acylcarnitine]/[carnitine] ratio. POCA did not affect the [carnitine]/[CoA] and the [short-chain acylcarnitine]/[carnitine] ratios, but it decreased the [long-chain acylcarnitine]/[carnitine] ratio. Ciprofibrate and POCA increased the activities of acyl-CoA hydrolases, and carnitine acetyltransferase activity was increased 28-fold and 6-fold by ciprofibrate and POCA respectively. In cultures of hepatocytes, ciprofibrate caused similar changes in enzyme activity to those observed in vivo, although [carnitine] decreased with time. The results suggest that: (1) the reactions catalysed by the short-chain carnitine acyltransferases, but not by the carnitine palmitoyltransferases, are near equilibrium in liver both before and after modification of metabolism by administration of ciprofibrate or POCA; (2) the increase in hepatic [carnitine] after ciprofibrate or POCA feeding can be explained by redistribution of carnitine between tissues; (3) the activity of carnitine acetyltransferase and [total carnitine] in liver are closely related.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L., Chowdhury M. H., Alberti K. G. Regulation of ketogenesis, gluconeogenesis and the mitochondrial redox state by dexamethasone in hepatocyte monolayer cultures. Biochem J. 1986 Nov 1;239(3):593–601. doi: 10.1042/bj2390593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Wright P. D., Alberti K. G. Carnitine acyltransferases and acyl-CoA hydrolases in human and rat liver. Clin Sci (Lond) 1987 Jul;73(1):3–10. doi: 10.1042/cs0730003. [DOI] [PubMed] [Google Scholar]
- Arnold A., McAuliff J. P., Powers L. G., Phillips D. K., Beyler A. L. The results of animal studies with ciprofibrate, a new orally effective hypolipidemic drug. Atherosclerosis. 1979 Feb;32(2):155–163. doi: 10.1016/0021-9150(79)90080-7. [DOI] [PubMed] [Google Scholar]
- Ball M. R., Gumaa K. A., McLean P. Effect of clofibrate on the CoA thioester profile in rat liver. Biochem Biophys Res Commun. 1979 Mar 30;87(2):489–496. doi: 10.1016/0006-291x(79)91822-9. [DOI] [PubMed] [Google Scholar]
- Berge R. K., Aarsland A. Correlation between the cellular level of long-chain acyl-CoA, peroxisomal beta-oxidation, and palmitoyl-CoA hydrolase activity in rat liver. Are the two enzyme systems regulated by a substrate-induced mechanism? Biochim Biophys Acta. 1985 Nov 14;837(2):141–151. doi: 10.1016/0005-2760(85)90237-1. [DOI] [PubMed] [Google Scholar]
- Bone A. J., Sherratt H. S., Turnbull D. M., Osmundsen H. Increased activity of peroxisomal beta-oxidation in rat liver caused by ethyl 2(5(4-chlorophenyl)pentyl)-oxiran-2-carboxylate: an inhibitor of mitochondrial beta-oxidation. Biochem Biophys Res Commun. 1982 Jan 29;104(2):708–712. doi: 10.1016/0006-291x(82)90694-5. [DOI] [PubMed] [Google Scholar]
- Brass E. P., Hoppel C. L. Carnitine metabolism in the fasting rat. J Biol Chem. 1978 Apr 25;253(8):2688–2693. [PubMed] [Google Scholar]
- Brdiczka D., Pette D., Brunner G., Miller F. Kompartimentierte Verteilung von Enzymen in Rattenlebermitochondrien. Eur J Biochem. 1968 Jul;5(2):294–304. doi: 10.1111/j.1432-1033.1968.tb00370.x. [DOI] [PubMed] [Google Scholar]
- Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. doi: 10.1152/physrev.1983.63.4.1420. [DOI] [PubMed] [Google Scholar]
- Chase J. F. The substrate specificity of carnitine acetyltransferase. Biochem J. 1967 Aug;104(2):510–518. doi: 10.1042/bj1040510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischner G., Meijer D. K., Levine W. G., Gatmaitan Z., Gluck R., Arias I. M. Effect of hypolipidemic drugs, nafenopin and clofibrate, on the concentration of ligandin and Z protein in rat liver. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1401–1407. doi: 10.1016/0006-291x(75)90182-5. [DOI] [PubMed] [Google Scholar]
- Foliot A., Drocourt J. L., Etienne J. P., Housset E., Fiessinger J. N., Christoforov B. Increase in the hepatic glucuronidation and clearance of bilirubin in clofibrate-treated rats. Biochem Pharmacol. 1977 Mar 15;26(6):547–549. doi: 10.1016/0006-2952(77)90333-1. [DOI] [PubMed] [Google Scholar]
- Frohlich J., Seccombe D. W., Hahn P., Dodek P., Hynie I. Effect of fasting on free and esterified carnitine levels in human serum and urine: correlation with serum levels of free fatty acids and beta-hydroxybutyrate. Metabolism. 1978 May;27(5):555–561. doi: 10.1016/0026-0495(78)90022-7. [DOI] [PubMed] [Google Scholar]
- Halvorsen O. Effects of hypolipidemic drugs on hepatic CoA. Biochem Pharmacol. 1983 Mar 15;32(6):1126–1128. doi: 10.1016/0006-2952(83)90638-x. [DOI] [PubMed] [Google Scholar]
- Hashimoto T. Individual peroxisomal beta-oxidation enzymes. Ann N Y Acad Sci. 1982;386:5–12. doi: 10.1111/j.1749-6632.1982.tb21403.x. [DOI] [PubMed] [Google Scholar]
- Hertz R., Bar-Tana J. Prevention of peroxisomal proliferation by carnitine palmitoyltransferase inhibitors in cultured rat hepatocytes and in vivo. Biochem J. 1987 Jul 15;245(2):387–392. doi: 10.1042/bj2450387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koundakjian P. P., Turnbull D. M., Bone A. J., Rogers M. P., Younan S. I., Sherratt H. S. Metabolic changes in fed rats caused by chronic administration of ethyl 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate, a new hypoglycaemic compound. Biochem Pharmacol. 1984 Feb 1;33(3):465–473. doi: 10.1016/0006-2952(84)90242-9. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannaerts G. P., Thomas J., Debeer L. J., McGarry J. D., Foster D. W. Hepatic fatty acid oxidation and ketogenesis after clofibrate treatment. Biochim Biophys Acta. 1978 May 25;529(2):201–211. doi: 10.1016/0005-2760(78)90063-2. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. An improved and simplified radioisotopic assay for the determination of free and esterified carnitine. J Lipid Res. 1976 May;17(3):277–281. [PubMed] [Google Scholar]
- Neat C. E., Thomassen M. S., Osmundsen H. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Isolation of rat liver peroxisomes by vertical-rotor centrifugation by using a self-generated, iso-osmotic, Percoll gradient. Biochem J. 1981 Apr 15;196(1):149–159. doi: 10.1042/bj1960149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neat C. E., Thomassen M. S., Osmundsen H. Induction of peroxisomal beta-oxidation in rat liver by high-fat diets. Biochem J. 1980 Jan 15;186(1):369–371. doi: 10.1042/bj1860369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osumi T., Hashimoto T. Acyl-CoA oxidase of rat liver: a new enzyme for fatty acid oxidation. Biochem Biophys Res Commun. 1978 Jul 28;83(2):479–485. doi: 10.1016/0006-291x(78)91015-x. [DOI] [PubMed] [Google Scholar]
- Pande S. V., Parvin R. Clofibrate enhancement of mitochondrial carnitine transport system of rat liver and augmentation of liver carnitine and gamma-butyrobetaine hydroxylase activity by thyroxine. Biochim Biophys Acta. 1980 Mar 21;617(3):363–370. doi: 10.1016/0005-2760(80)90002-8. [DOI] [PubMed] [Google Scholar]
- Paul H. S., Adibi S. A. Paradoxical effects of clofibrate on liver and muscle metabolism in rats. Induction of myotonia and alteration of fatty acid and glucose oxidation. J Clin Invest. 1979 Aug;64(2):405–412. doi: 10.1172/JCI109476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul H. S., Gleditsch C. E., Adibi S. A. Mechanism of increased hepatic concentration of carnitine by clofibrate. Am J Physiol. 1986 Sep;251(3 Pt 1):E311–E315. doi: 10.1152/ajpendo.1986.251.3.E311. [DOI] [PubMed] [Google Scholar]
- Reddy J. K., Warren J. R., Reddy M. K., Lalwani N. D. Hepatic and renal effects of peroxisome proliferators: biological implications. Ann N Y Acad Sci. 1982;386:81–110. doi: 10.1111/j.1749-6632.1982.tb21409.x. [DOI] [PubMed] [Google Scholar]
- Renaud G., Foliot A., Infante R. Increased uptake of fatty acids by the isolated rat liver after raising the fatty acid binding protein concentration with clofibrate. Biochem Biophys Res Commun. 1978 Jan 30;80(2):327–334. doi: 10.1016/0006-291x(78)90680-0. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
- Skrede S., Halvorsen O. Increased biosynthesis of CoA in the liver of rats treated with clofibrate. Eur J Biochem. 1979 Jul;98(1):223–229. doi: 10.1111/j.1432-1033.1979.tb13180.x. [DOI] [PubMed] [Google Scholar]
- Svoboda D. J., Azarnoff D. L. Response of hepatic microbodies to a hypolipidemic agent, ethyl chlorophenoxyisobutyrate (CPIB). J Cell Biol. 1966 Aug;30(2):442–450. doi: 10.1083/jcb.30.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Söling H. D., Rescher C. On the regulation of cold-labile cytosolic and of mitochondrial acetyl-CoA hydrolase in rat liver. Eur J Biochem. 1985 Feb 15;147(1):111–117. doi: 10.1111/j.1432-1033.1985.tb08726.x. [DOI] [PubMed] [Google Scholar]
- Turnbull D. M., Bartlett K., Younan S. I., Sherratt H. S. The effects of 2[5(4-chlorophenyl)pentyl]oxirane-2-carbonyl-Co-A on mitochondrial oxidations. Biochem Pharmacol. 1984 Feb 1;33(3):475–481. doi: 10.1016/0006-2952(84)90243-0. [DOI] [PubMed] [Google Scholar]
- Van Hoof F., Hue L., Vamecq J., Sherratt H. S. Protection of rats by clofibrate against the hypoglycaemic and toxic effects of hypoglycin and pent-4-enoate. An ultrastructural and biochemical study. Biochem J. 1985 Jul 15;229(2):387–397. doi: 10.1042/bj2290387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voltti H., Savolainen M. J., Jauhonen V. P., Hassinen I. E. Clofibrate-induced increase in coenzyme A concentration in rat tissues. Biochem J. 1979 Jul 15;182(1):95–102. doi: 10.1042/bj1820095. [DOI] [PMC free article] [PubMed] [Google Scholar]