Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jul 15;253(2):401–408. doi: 10.1042/bj2530401

Dexamethasone influences the lipid fluidity, lipid composition and glycosphingolipid glycosyltransferase activities of rat proximal-small-intestinal Golgi membranes.

P K Dudeja 1, R Dahiya 1, M D Brown 1, T A Brasitus 1
PMCID: PMC1149313  PMID: 3140778

Abstract

Experiments were performed to examine the effects of subcutaneous administration of the synthetic glucocorticoid dexamethasone (100 micrograms/day per 100 g body wt.) on the lipid fluidity, lipid composition and glycosphingolipid glycosyltransferase activities of rat proximal-small-intestinal Golgi membranes. After 4 days of treatment, Golgi membranes and liposomes prepared from treated rats were found to possess a greater fluidity than their control (diluent or 0.9% NaCl) counterpart, as assessed by steady-state fluorescence-polarization techniques using three different fluorophores. Moreover, analysis of the effects of temperature on the anisotropy values of 1,6-diphenylhexa-1,3,5-triene, using Arrhenius plots, demonstrated that the mean break-point temperatures of treated preparations were 4-5 degrees C lower than those of control preparations. Changes in the fatty acyl saturation index and double-bond index of treated membranes, secondary to alterations in stearic acid, linoleic acid and arachidonic acid, at least in part, appeared to be responsible for the differences in fluidity noted between treated and control Golgi membranes. Concomitant with these fluidity and lipid-compositional alterations, treated membranes possessed higher specific activities of UDP-galactosyl-lactosylceramide galactosyltransferase and CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase than their control counterparts. Experiments utilizing benzyl alcohol, a known fluidizer, furthermore suggested that the fluidity alteration induced by dexamethasone may be responsible for the increased activity of the former, but not the latter, glycosphingolipid glycosyltransferase.

Full text

PDF
401

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Ananna A., Eloy R., Bouchet P., Clendinnen G., Grenier J. F. Effects of oral and parenteral corticosteroids on intestinal villous morphology and brush border enzymes in the rat. Lab Invest. 1979 Jul;41(1):83–88. [PubMed] [Google Scholar]
  3. Binder H. J. Effect of dexamethasone on electrolyte transport in the large intestine of the rat. Gastroenterology. 1978 Aug;75(2):212–217. [PubMed] [Google Scholar]
  4. Bouhours J. F., Glickman R. M. Rat intestinal glycolipids. II. Distribution and biosynthesis of glycolipids and ceramide in villus and crypt cells. Biochim Biophys Acta. 1976 Jul 20;441(1):123–133. doi: 10.1016/0005-2760(76)90287-3. [DOI] [PubMed] [Google Scholar]
  5. Bouhours J. F., Glickman R. M. Rat intestinal glycolipids. III. Fatty acids and long chain bases of glycolipids from villus and crypt cells. Biochim Biophys Acta. 1977 Apr 26;487(1):51–60. doi: 10.1016/0005-2760(77)90043-1. [DOI] [PubMed] [Google Scholar]
  6. Boullier J. A., Melnykovych G., Barisas B. G. A photobleaching recovery study of glucocorticoid effects on lateral mobilities of a lipid analog in S3G HeLa cell membranes. Biochim Biophys Acta. 1982 Nov 8;692(2):278–286. doi: 10.1016/0005-2736(82)90532-6. [DOI] [PubMed] [Google Scholar]
  7. Brasitus T. A., Dahiya R., Dudeja P. K. Rat proximal small intestinal Golgi membranes: lipid composition and fluidity. Biochim Biophys Acta. 1988 Feb 4;958(2):218–226. doi: 10.1016/0005-2760(88)90180-4. [DOI] [PubMed] [Google Scholar]
  8. Brasitus T. A., Dudeja P. K. Correction of abnormal lipid fluidity and composition of rat ileal microvillus membranes in chronic streptozotocin-induced diabetes by insulin therapy. J Biol Chem. 1985 Oct 15;260(23):12405–12409. [PubMed] [Google Scholar]
  9. Brasitus T. A., Dudeja P. K., Dahiya R., Halline A. Dexamethasone-induced alterations in lipid composition and fluidity of rat proximal-small-intestinal brush-border membranes. Biochem J. 1987 Dec 1;248(2):455–461. doi: 10.1042/bj2480455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brasitus T. A., Dudeja P. K., Eby B., Lau K. Correction by 1-25-dihydroxycholecalciferol of the abnormal fluidity and lipid composition of enterocyte brush border membranes in vitamin D-deprived rats. J Biol Chem. 1986 Dec 15;261(35):16404–16409. [PubMed] [Google Scholar]
  11. Brasitus T. A., Keresztes R. S. Protein-lipid interactions in antipodal plasma membranes of rat colonocytes. Biochim Biophys Acta. 1984 Jun 27;773(2):290–300. doi: 10.1016/0005-2736(84)90093-2. [DOI] [PubMed] [Google Scholar]
  12. Brasitus T. A. Lipid dynamics and protein-lipid interactions in rat colonic epithelial cell basolateral membranes. Biochim Biophys Acta. 1983 Feb 9;728(1):20–30. doi: 10.1016/0005-2736(83)90432-7. [DOI] [PubMed] [Google Scholar]
  13. Brasitus T. A., Schachter D. Lipid dynamics and lipid-protein interactions in rat enterocyte basolateral and microvillus membranes. Biochemistry. 1980 Jun 10;19(12):2763–2769. doi: 10.1021/bi00553a035. [DOI] [PubMed] [Google Scholar]
  14. Brasitus T. A., Schachter D., Mamouneas T. G. Functional interactions of lipids and proteins in rat intestinal microvillus membranes. Biochemistry. 1979 Sep 18;18(19):4136–4144. doi: 10.1021/bi00586a013. [DOI] [PubMed] [Google Scholar]
  15. Brasitus T. A., Tall A. R., Schachter D. Thermotropic transitions in rat intestinal plasma membranes studied by differential scanning calorimetry and fluorescence polarization. Biochemistry. 1980 Mar 18;19(6):1256–1261. doi: 10.1021/bi00547a033. [DOI] [PubMed] [Google Scholar]
  16. Bremer E. G., Hakomori S., Bowen-Pope D. F., Raines E., Ross R. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem. 1984 Jun 10;259(11):6818–6825. [PubMed] [Google Scholar]
  17. Bremer E. G., Hakomori S. GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: ganglioside may regulate growth factor receptor function. Biochem Biophys Res Commun. 1982 Jun 15;106(3):711–718. doi: 10.1016/0006-291x(82)91769-7. [DOI] [PubMed] [Google Scholar]
  18. Burczak J. D., Soltysiak R. M., Sweeley C. C. Regulation of membrane-bound enzymes of glycosphingolipid biosynthesis. J Lipid Res. 1984 Dec 15;25(13):1541–1547. [PubMed] [Google Scholar]
  19. Chapman D., Penkett S. A. Nuclear magnetic resonance spectroscopic studies of the interaction of phospholipids with cholesterol. Nature. 1966 Sep 17;211(5055):1304–1305. doi: 10.1038/2111304a0. [DOI] [PubMed] [Google Scholar]
  20. Cogan U., Schachter D. Asymmetry of lipid dynamics in human erythrocyte membranes studied with impermeant fluorophores. Biochemistry. 1981 Oct 27;20(22):6396–6403. doi: 10.1021/bi00525a018. [DOI] [PubMed] [Google Scholar]
  21. Dahiya R., Brasitus T. A. Dexamethasone-induced alterations in the glycosphingolipids of rat proximal small-intestinal mucosa. Biochim Biophys Acta. 1987 Nov 21;922(2):118–124. doi: 10.1016/0005-2760(87)90145-7. [DOI] [PubMed] [Google Scholar]
  22. Dahiya R., Dudeja P. K., Brasitus T. A. Premalignant alterations in the glycosphingolipid composition of colonic epithelial cells of rats treated with 1,2-dimethylhydrazine. Cancer Res. 1987 Feb 15;47(4):1031–1035. [PubMed] [Google Scholar]
  23. Daniels V. G., Hardy R. N., Malinowska K. W., Nathanielsz P. W. The influence of exogenous steroids on macromolecule uptake by the small intestine of the new-born rat. J Physiol. 1973 Mar;229(3):681–695. doi: 10.1113/jphysiol.1973.sp010160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Dudeja P. K., Foster E. S., Brasitus T. A. Modulation of rat distal colonic brush-border membrane Na+-H+ exchange by dexamethasone: role of lipid fluidity. Biochim Biophys Acta. 1987 Dec 11;905(2):485–493. doi: 10.1016/0005-2736(87)90478-0. [DOI] [PubMed] [Google Scholar]
  25. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  26. Farquhar M. G., Palade G. E. The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol. 1981 Dec;91(3 Pt 2):77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fernandez Y. J., Boigegrain R. A., Cambon-Gros C. D., Mitjavila S. E. Sensitivity of Na+-coupled D-glucose uptake, Mg2+-ATPase and sucrase to perturbations of the fluidity of brush-border membrane vesicles induced by n-aliphatic alcohols. Biochim Biophys Acta. 1984 Mar 14;770(2):171–177. doi: 10.1016/0005-2736(84)90127-5. [DOI] [PubMed] [Google Scholar]
  28. Field M. Corticosteroids, Na,K-ATPase and intestinal water and electrolyte transport. Gastroenterology. 1978 Aug;75(2):317–319. [PubMed] [Google Scholar]
  29. Fleischer B., Fleischer S. Preparation and characterization of golgi membranes from rat liver. Biochim Biophys Acta. 1970 Dec 1;219(2):301–319. doi: 10.1016/0005-2736(70)90209-9. [DOI] [PubMed] [Google Scholar]
  30. Freedman R. A., Weiser M. M., Isselbacher K. J. Calcium translocation by Golgi and lateral-basal membrane vesicles from rat intestine: decrease in vitamin D-deficient rats. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3612–3616. doi: 10.1073/pnas.74.8.3612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gartner S. L., Vahouny G. V. Effects of epinephrine and cyclic 3',5'-AMP on perfused rat hearts. Am J Physiol. 1972 May;222(5):1121–1124. doi: 10.1152/ajplegacy.1972.222.5.1121. [DOI] [PubMed] [Google Scholar]
  32. Gordon L. M., Sauerheber R. D., Esgate J. A., Dipple I., Marchmont R. J., Houslay M. D. The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes. J Biol Chem. 1980 May 25;255(10):4519–4527. [PubMed] [Google Scholar]
  33. Henning S. J., Sims J. M. Delineation of the glucocorticoid-sensitive period of intestinal development in the rat. Endocrinology. 1979 Apr;104(4):1158–1163. doi: 10.1210/endo-104-4-1158. [DOI] [PubMed] [Google Scholar]
  34. Higgins J. A., Fieldsend J. K. Phosphatidylcholine synthesis for incorporation into membranes or for secretion as plasma lipoproteins by Golgi membranes of rat liver. J Lipid Res. 1987 Mar;28(3):268–278. [PubMed] [Google Scholar]
  35. Higgins J. A., Hutson J. L. The roles of Golgi and endoplasmic reticulum in the synthesis and assembly of lipoprotein lipids in rat hepatocytes. J Lipid Res. 1984 Dec 1;25(12):1295–1305. [PubMed] [Google Scholar]
  36. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  37. Johnston D., Melnykovych G. Effects of dexamethasone on the fluorescence polarization of diphenylhexatriene in HeLa cells. Biochim Biophys Acta. 1980 Feb 28;596(2):320–324. doi: 10.1016/0005-2736(80)90365-x. [DOI] [PubMed] [Google Scholar]
  38. Jones A. L., Ruderman N. B., Herrera M. G. Electron microscopic and biochemical study of lipoprotein synthesis in the isolated perfused rat liver. J Lipid Res. 1967 Sep;8(5):429–446. [PubMed] [Google Scholar]
  39. Jähnig F. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361–6365. doi: 10.1073/pnas.76.12.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kapitulnik J., Weil E., Rabinowitz R. Glucocorticoids increase the fluidity of the fetal-rat liver microsomal membrane in the perinatal period. Biochem J. 1986 Oct 1;239(1):41–45. doi: 10.1042/bj2390041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Katz S. S., Shipley G. G., Small D. M. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest. 1976 Jul;58(1):200–211. doi: 10.1172/JCI108450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Keenan T. W., Morré D. J., Basu S. Ganglioside biosynthesis. Concentration of glycosphingolipid glycosyltransferases in Golgi apparatus from rat liver. J Biol Chem. 1974 Jan 10;249(1):310–315. [PubMed] [Google Scholar]
  43. Kim Y. S., Perdomo J., Whitehead J. S. Glycosyltransferases in human blood.I. Galactosyltransferase in human serum and erythrocyte membranes. J Clin Invest. 1972 Aug;51(8):2024–2032. doi: 10.1172/JCI107008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  45. Lakowicz J. R., Prendergast F. G., Hogen D. Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry. 1979 Feb 6;18(3):508–519. doi: 10.1021/bi00570a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lebenthal E., Sunshine P., Kretchmer N. Effect of carbohydrate and corticosteroids on activity of -glucosidases in intestine of the infant rat. J Clin Invest. 1972 May;51(5):1244–1250. doi: 10.1172/JCI106919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Lentze M. J., Colony P. C., Trier J. S. Glucocorticoid receptors in isolated intestinal epithelial cells in rats. Am J Physiol. 1985 Jul;249(1 Pt 1):G58–G65. doi: 10.1152/ajpgi.1985.249.1.G58. [DOI] [PubMed] [Google Scholar]
  48. Marnane W. G., Tai Y. H., Decker R. A., Boedeker E. C., Charney A. N., Donowitz M. Methylprednisolone stimulation of guanylate cyclase activity in rat small intestinal mucosa: possible role in electrolyte transport. Gastroenterology. 1981 Jul;81(1):90–100. [PubMed] [Google Scholar]
  49. Meneely R., Ghishan F. K. Intestinal maturation in the rat: the effect of glucocorticoids on sodium, potassium, water and glucose absorption. Pediatr Res. 1982 Sep;16(9):776–778. doi: 10.1203/00006450-198209000-00014. [DOI] [PubMed] [Google Scholar]
  50. Mitranic M. M., Boggs J. M., Moscarello M. A. The effect of linoleic acid and benzyl alcohol on the activity of glycosyltransferases of rat liver Golgi membranes and some soluble glycosyltransferases. Biochim Biophys Acta. 1982 Dec 8;693(1):75–84. doi: 10.1016/0005-2736(82)90472-2. [DOI] [PubMed] [Google Scholar]
  51. Oldfield E., Chapman D. Effects of cholesterol and cholesterol derivatives on hydrocarbon chain mobility in lipids. Biochem Biophys Res Commun. 1971 May 7;43(3):610–616. doi: 10.1016/0006-291x(71)90658-9. [DOI] [PubMed] [Google Scholar]
  52. Podolsky D. K., Weiser M. M. Galactosyltransferase activities in human sera: detection of a cancer-associated isoenzyme. Biochem Biophys Res Commun. 1975 Jul 22;65(2):545–551. doi: 10.1016/s0006-291x(75)80181-1. [DOI] [PubMed] [Google Scholar]
  53. Schachter D., Cogan U., Abbott R. E. Asymmetry of lipid dynamics in human erythrocyte membranes studied with permanent fluorophores. Biochemistry. 1982 Apr 27;21(9):2146–2150. doi: 10.1021/bi00538a025. [DOI] [PubMed] [Google Scholar]
  54. Schachter D. Fluidity and function of hepatocyte plasma membranes. Hepatology. 1984 Jan-Feb;4(1):140–151. doi: 10.1002/hep.1840040124. [DOI] [PubMed] [Google Scholar]
  55. Schachter D., Shinitzky M. Fluorescence polarization studies of rat intestinal microvillus membranes. J Clin Invest. 1977 Mar;59(3):536–548. doi: 10.1172/JCI108669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schwarz S. M., Watkins J. B., Ling S. C., Fayer J. C., Mone M. Effects of ethinyl estradiol on intestinal membrane structure and function in the rabbit. Biochim Biophys Acta. 1986 Aug 21;860(2):411–419. doi: 10.1016/0005-2736(86)90537-7. [DOI] [PubMed] [Google Scholar]
  57. Scott J., Batt R. M., Maddison Y. E., Peters T. J. Differential effect of glucocorticoids on structure and function of adult rat jejunum. Am J Physiol. 1981 Oct;241(4):G306–G312. doi: 10.1152/ajpgi.1981.241.4.G306. [DOI] [PubMed] [Google Scholar]
  58. Shinitzky M., Barenholz Y. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem. 1974 Apr 25;249(8):2652–2657. [PubMed] [Google Scholar]
  59. Shinitzky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978 Dec 15;515(4):367–394. doi: 10.1016/0304-4157(78)90010-2. [DOI] [PubMed] [Google Scholar]
  60. Shinitzky M., Inbar M. Microviscosity parameters and protein mobility in biological membranes. Biochim Biophys Acta. 1976 Apr 16;433(1):133–149. doi: 10.1016/0005-2736(76)90183-8. [DOI] [PubMed] [Google Scholar]
  61. Stubbs C. D. Membrane fluidity: structure and dynamics of membrane lipids. Essays Biochem. 1983;19:1–39. [PubMed] [Google Scholar]
  62. Stubbs C. D., Smith A. D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 1984 Jan 27;779(1):89–137. doi: 10.1016/0304-4157(84)90005-4. [DOI] [PubMed] [Google Scholar]
  63. Van Blitterswijk W. J., Van Hoeven R. P., Van der Meer B. W. Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements. Biochim Biophys Acta. 1981 Jun 22;644(2):323–332. doi: 10.1016/0005-2736(81)90390-4. [DOI] [PubMed] [Google Scholar]
  64. Weiser M. M. Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem. 1973 Apr 10;248(7):2536–2541. [PubMed] [Google Scholar]
  65. Wood P. A., McBride M. R., Baker H. J., Christian S. T. Fluorescence polarization analysis, lipid composition, and Na+, K+-ATPase kinetics of synaptosomal membranes in feline GM1 and GM2 gangliosidosis. J Neurochem. 1985 Mar;44(3):947–956. doi: 10.1111/j.1471-4159.1985.tb12909.x. [DOI] [PubMed] [Google Scholar]
  66. Yusuf H. K., Pohlentz G., Schwarzmann G., Sandhoff K. Ganglioside biosynthesis in Golgi apparatus of rat liver. Stimulation by phosphatidylglycerol and inhibition by tunicamycin. Eur J Biochem. 1983 Jul 15;134(1):47–54. doi: 10.1111/j.1432-1033.1983.tb07529.x. [DOI] [PubMed] [Google Scholar]
  67. ZLATKIS A., ZAK B., BOYLE A. J. A new method for the direct determination of serum cholesterol. J Lab Clin Med. 1953 Mar;41(3):486–492. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES