Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jul 15;253(2):467–473. doi: 10.1042/bj2530467

The calcium-dependent proteolytic system calpain-calpastatin in Drosophila melanogaster.

M Pintér 1, P Friedrich 1
PMCID: PMC1149321  PMID: 2845920

Abstract

Ca2+-dependent proteolytic activity was detected at pH 7.5 in head extracts of the fruit fly Drosophila melanogaster. This activity was abolished by iodoacetate, but was unaffected by phenylmethanesulphonyl fluoride. These properties resemble those of the Ca2+-dependent thiol-proteinase calpain. The activity appeared at Mr 280,000 on Sepharose CL-6B gel chromatography. DEAE-cellulose chromatography revealed two activity peaks, with elution positions corresponding to vertebrate calpains I and II. The fly head enzymes were inhibited by a heat-stable and trypsin-sensitive component of the fly head extract, which also inhibited calpains from rat kidney. The inhibitor emerged from Sepharose CL-6B columns at Mr 310,000 and from DEAE-cellulose at a position corresponding to the protein inhibitor calpastatin from other sources. It is concluded that Drosophila heads comprise the Ca2+-dependent calpain-calpastatin proteolytic system.

Full text

PDF
467

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adnot S., Poirier-Dupuis M., Franks D. J., Hamet P. Stimulation of rat platelet adenylate cyclase by an endogenous calcium-dependent protease-like activity. J Cyclic Nucleotide Res. 1982;8(2):103–118. [PubMed] [Google Scholar]
  2. Ando Y., Imamura S., Yamagata Y., Kitahara A., Saji H., Murachi T., Kannagi R. Platelet factor XIII is activated by calpain. Biochem Biophys Res Commun. 1987 Apr 14;144(1):484–490. doi: 10.1016/s0006-291x(87)80535-1. [DOI] [PubMed] [Google Scholar]
  3. Aoki K., Imajoh S., Ohno S., Emori Y., Koike M., Kosaki G., Suzuki K. Complete amino acid sequence of the large subunit of the low-Ca2+-requiring form of human Ca2+-activated neutral protease (muCANP) deduced from its cDNA sequence. FEBS Lett. 1986 Sep 15;205(2):313–317. doi: 10.1016/0014-5793(86)80919-x. [DOI] [PubMed] [Google Scholar]
  4. Baudry M., Simonson L., Dubrin R., Lynch G. A comparative study of soluble calcium-dependent proteolytic activity in brain. J Neurobiol. 1986 Jan;17(1):15–28. doi: 10.1002/neu.480170103. [DOI] [PubMed] [Google Scholar]
  5. Brooks B. A., Goll D. E., Peng Y. S., Greweling J. A., Hennecke G. Effect of starvation and refeeding on activity of a Ca2+-dependent protease in rat skeletal muscle. J Nutr. 1983 Jan;113(1):145–158. doi: 10.1093/jn/113.1.145. [DOI] [PubMed] [Google Scholar]
  6. Clark A. F., DeMartino G. N., Croall D. E. Fractionation and quantification of calcium-dependent proteinase activity from small tissue samples. Biochem J. 1986 Apr 1;235(1):279–282. doi: 10.1042/bj2350279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeMartino G. N., Blumenthal D. K. Identification and partial purification of a factor that stimulates calcium-dependent proteases. Biochemistry. 1982 Aug 31;21(18):4297–4303. doi: 10.1021/bi00261a019. [DOI] [PubMed] [Google Scholar]
  8. Dévay P., Pintér M., Yalcin A. S., Friedrich P. Altered autophosphorylation of adenosine 3',5'-phosphate-dependent protein kinase in the dunce memory mutant of Drosophila melanogaster. Neuroscience. 1986 May;18(1):193–203. doi: 10.1016/0306-4522(86)90188-0. [DOI] [PubMed] [Google Scholar]
  9. GUROFF G. A NEUTRAL, CALCIUM-ACTIVATED PROTEINASE FROM THE SOLUBLE FRACTION OF RAT BRAIN. J Biol Chem. 1964 Jan;239:149–155. [PubMed] [Google Scholar]
  10. Gilbert D. S., Newby B. J. Neurofilament disguise, destruction and discipline. Nature. 1975 Aug 14;256(5518):586–589. doi: 10.1038/256586a0. [DOI] [PubMed] [Google Scholar]
  11. Hamon M., Bourgoin S. Characterization of the Ca2+-induced proteolytic activation of tryptophan hydroxylase from the rat brain stem. J Neurochem. 1979 Jun;32(6):1837–1844. doi: 10.1111/j.1471-4159.1979.tb02298.x. [DOI] [PubMed] [Google Scholar]
  12. Heilmeyer L. M., Jr, Meyer F., Haschke R. H., Fischer E. H. Control of phosphorylase activity in a muscle glycogen particle. II. Activation by calcium. J Biol Chem. 1970 Dec 25;245(24):6649–6656. [PubMed] [Google Scholar]
  13. Hiraga A., Tsuiki S. Activation of a D-form of rabbit muscle glycogen synthase by Ca2+-activated protease. FEBS Lett. 1986 Sep 1;205(1):1–5. doi: 10.1016/0014-5793(86)80853-5. [DOI] [PubMed] [Google Scholar]
  14. Huston R. B., Krebs E. G. Activation of skeletal muscle phosphorylase kinase by Ca2+. II. Identification of the kinase activating factor as a proteolytic enzyme. Biochemistry. 1968 Jun;7(6):2116–2122. doi: 10.1021/bi00846a014. [DOI] [PubMed] [Google Scholar]
  15. Ishiura S., Tsuji S., Murofushi H., Suzuki K. Purification of an endogenous 68,000-dalton inhibitor of Ca2+-activated neutral protease from chicken skeletal muscle. Biochim Biophys Acta. 1982 Feb 18;701(2):216–223. doi: 10.1016/0167-4838(82)90116-9. [DOI] [PubMed] [Google Scholar]
  16. Kishimoto A., Kajikawa N., Shiota M., Nishizuka Y. Proteolytic activation of calcium-activated, phospholipid-dependent protein kinase by calcium-dependent neutral protease. J Biol Chem. 1983 Jan 25;258(2):1156–1164. [PubMed] [Google Scholar]
  17. Mellgren R. L., Aylward J. H., Killilea S. D., Lee E. Y. The activation and dissociation of a native high molecular weight form of rabbit skeletal muscle phosphorylase phosphatase by endogenous CA2+-dependent proteases. J Biol Chem. 1979 Feb 10;254(3):648–652. [PubMed] [Google Scholar]
  18. Mellgren R. L. Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium. FEBS Lett. 1980 Jan 1;109(1):129–133. doi: 10.1016/0014-5793(80)81326-3. [DOI] [PubMed] [Google Scholar]
  19. Mellgren R. L., Carr T. C. The protein inhibitor of calcium-dependent proteases: purification from bovine heart and possible mechanisms of regulation. Arch Biochem Biophys. 1983 Sep;225(2):779–786. doi: 10.1016/0003-9861(83)90089-9. [DOI] [PubMed] [Google Scholar]
  20. Mellgren R. L., Mericle M. T., Lane R. D. Proteolysis of the calcium-dependent protease inhibitor by myocardial calcium-dependent protease. Arch Biochem Biophys. 1986 Apr;246(1):233–239. doi: 10.1016/0003-9861(86)90468-6. [DOI] [PubMed] [Google Scholar]
  21. Murachi T., Tanaka K., Hatanaka M., Murakami T. Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Adv Enzyme Regul. 1980;19:407–424. doi: 10.1016/0065-2571(81)90026-1. [DOI] [PubMed] [Google Scholar]
  22. Mykles D. L., Skinner D. M. Ca2+-dependent proteolytic activity in crab claw muscle. Effects of inhibitors and specificity for myofibrillar proteins. J Biol Chem. 1983 Sep 10;258(17):10474–10480. [PubMed] [Google Scholar]
  23. Mykles D. L., Skinner D. M. Four Ca2+-dependent proteinase activities isolated from crustacean muscle differ in size, net charge, and sensitivity to Ca2+ and inhibitors. J Biol Chem. 1986 Jul 25;261(21):9865–9871. [PubMed] [Google Scholar]
  24. Nelson W. J., Traub P. Intermediate (10 nm) filament proteins and the Ca2+-activated proteinase specific for vimentin and desmin in the cells from fish to man: an example of evolutionary conservation. J Cell Sci. 1982 Oct;57:25–49. doi: 10.1242/jcs.57.1.25. [DOI] [PubMed] [Google Scholar]
  25. Nishiura I., Tanaka K., Yamato S., Murachi T. The occurrence of an inhibitor of Ca2+-dependent neutral protease in rat liver. J Biochem. 1978 Dec;84(6):1657–1659. doi: 10.1093/oxfordjournals.jbchem.a132296. [DOI] [PubMed] [Google Scholar]
  26. Nosek T. M., Crosland M. B. Calcium-dependent proteolysis in neural tissue is activated at physiologic intracellular Ca2+ levels and inhibited by some anticonvulsants. J Neurobiol. 1983 Jan;14(1):9–16. doi: 10.1002/neu.480140103. [DOI] [PubMed] [Google Scholar]
  27. Ohno S., Emori Y., Imajoh S., Kawasaki H., Kisaragi M., Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature. 1984 Dec 6;312(5994):566–570. doi: 10.1038/312566a0. [DOI] [PubMed] [Google Scholar]
  28. Orrego F. Protein degradation in squid giant axons. J Neurochem. 1971 Dec;18(12):2249–2254. doi: 10.1111/j.1471-4159.1971.tb00181.x. [DOI] [PubMed] [Google Scholar]
  29. Read S. M., Northcote D. H. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem. 1981 Sep 1;116(1):53–64. doi: 10.1016/0003-2697(81)90321-3. [DOI] [PubMed] [Google Scholar]
  30. Sakihama T., Kakidani H., Zenita K., Yumoto N., Kikuchi T., Sasaki T., Kannagi R., Nakanishi S., Ohmori M., Takio K. A putative Ca2+-binding protein: structure of the light subunit of porcine calpain elucidated by molecular cloning and protein sequence analysis. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6075–6079. doi: 10.1073/pnas.82.18.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shigeta K., Yumoto N., Murachi T. Fragmentation of a 70000-dalton calpastatin molecule upon its complex formation with calpain. Biochem Int. 1984 Sep;9(3):327–333. [PubMed] [Google Scholar]
  32. Suzuki K., Ishiura S., Tsuji S., Katamoto T., Sugita H., Imahori K. Calcium activated neutral protease from human skeletal muscle. FEBS Lett. 1979 Aug 15;104(2):355–358. doi: 10.1016/0014-5793(79)80851-0. [DOI] [PubMed] [Google Scholar]
  33. Takeyama Y., Nakanishi H., Uratsuji Y., Kishimoto A., Nishizuka Y. A calcium-protease activator associated with brain microsomal-insoluble elements. FEBS Lett. 1986 Jan 1;194(1):110–114. doi: 10.1016/0014-5793(86)80060-6. [DOI] [PubMed] [Google Scholar]
  34. Toyohara H., Makinodan Y., Tanaka K., Ikeda S. Purification and properties of carp (Cyprinus carpio) muscle calpain II (high-Ca2+-requiring form of calpain). Comp Biochem Physiol B. 1985;81(3):573–578. doi: 10.1016/0305-0491(85)90368-2. [DOI] [PubMed] [Google Scholar]
  35. UDENFRIEND S., COOPER J. R. The chemical estimation of tyrosine and tyramine. J Biol Chem. 1952 May;196(1):227–233. [PubMed] [Google Scholar]
  36. Waelkens E., Goris J., Merlevede W. Activation of the PCSM-protein phosphatase by a Ca2+-dependent protease. FEBS Lett. 1985 Nov 18;192(2):317–320. doi: 10.1016/0014-5793(85)80133-2. [DOI] [PubMed] [Google Scholar]
  37. Waxman L. Calcium-activated proteases in mammalian tissues. Methods Enzymol. 1981;80(Pt 100):664–680. doi: 10.1016/s0076-6879(81)80051-1. [DOI] [PubMed] [Google Scholar]
  38. Waxman L., Krebs E. G. Identification of two protease inhibitors from bovine cardiac muscle. J Biol Chem. 1978 Sep 10;253(17):5888–5891. [PubMed] [Google Scholar]
  39. Zimmerman U. J., Schlaepfer W. W. Calcium-activated neutral protease (CANP) in brain and other tissues. Prog Neurobiol. 1984;23(1-2):63–78. doi: 10.1016/0301-0082(84)90012-1. [DOI] [PubMed] [Google Scholar]
  40. Zimmerman U. J., Schlaepfer W. W. Kinase activities associated with calcium-activated neutral proteases. Biochem Biophys Res Commun. 1984 May 16;120(3):767–774. doi: 10.1016/s0006-291x(84)80173-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES