Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jul 15;253(2):511–516. doi: 10.1042/bj2530511

Purification and characterization of 5-ketofructose reductase from Erwinia citreus.

J L Schrimsher 1, P T Wingfield 1, A Bernard 1, R Mattaliano 1, M A Payton 1
PMCID: PMC1149327  PMID: 3178725

Abstract

5-Ketofructose reductase [D(-)fructose:(NADP+) 5-oxidoreductase] was purified to homogeneity from Erwinia citreus and demonstrated to catalyse the reversible NADPH-dependent reduction of 5-ketofructose (D-threo-2,5-hexodiulose) to D-fructose. The enzyme appeared as a single species upon analyses by SDS/polyacrylamide-gel electrophoresis and isoelectric focusing with an apparent relative molecular mass of 40,000 and an isoelectric point of 4.4. The amino acid composition of the enzyme and the N-terminal sequence of the first 39 residues are described. The steady-state kinetic mechanism was an ordered one with NADPH binding first to the enzyme and then to 5-ketofructose, and the order of product release was D-fructose followed by NADP+. The reversible nature of the reaction offers the possibility of using this enzyme for the determination of D-fructose.

Full text

PDF
511

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ameyama M., Shinagawa E., Matsushita K., Adachi O. D-fructose dehydrogenase of Gluconobacter industrius: purification, characterization, and application to enzymatic microdetermination of D-fructose. J Bacteriol. 1981 Feb;145(2):814–823. doi: 10.1128/jb.145.2.814-823.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avigad G., Englard S., Pifko S. 5-Keto-D-fructose. IV. A specific reduced nicotinamide adenine dinucleotide phosphate-linked reductase from Gluconobacter cerinus. J Biol Chem. 1966 Jan 25;241(2):373–378. [PubMed] [Google Scholar]
  3. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  4. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  5. Huber R. E., Brockbank R. L. Strong inhibitory effect of furanoses and sugar lactones on beta-galactosidase Escherichia coli. Biochemistry. 1987 Mar 24;26(6):1526–1531. doi: 10.1021/bi00380a005. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Wingfield P., Payton M., Tavernier J., Barnes M., Shaw A., Rose K., Simona M. G., Demczuk S., Williamson K., Dayer J. M. Purification and characterization of human interleukin-1 beta expressed in recombinant Escherichia coli. Eur J Biochem. 1986 Nov 3;160(3):491–497. doi: 10.1111/j.1432-1033.1986.tb10066.x. [DOI] [PubMed] [Google Scholar]
  8. Yamada Y., Aida K., Uemura T. Enzymatic studies on the oxidation of sugar and sugar alcohol. II. Purification and properties of NADPH-linked 5-ketofructose reductase. J Biochem. 1967 Jun;61(6):803–811. doi: 10.1093/oxfordjournals.jbchem.a128616. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES