Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Jul 15;253(2):569–576. doi: 10.1042/bj2530569

Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein.

C J Reed 1, E A Lock 1, F De Matteis 1
PMCID: PMC1149335  PMID: 3263118

Abstract

1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone nor beta-naphthoflavone treatment had any effect upon olfactory cytochrome P-450-dependent reactions, although it induced those of the liver.

Full text

PDF
569

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldridge W. N., Dinsdale D., Nemery B., Verschoyle R. D. Some aspects of the toxicology of trimethyl and triethyl phosphorothioates. Fundam Appl Toxicol. 1985 Dec;5(6 Pt 2):S47–S60. doi: 10.1016/0272-0590(85)90114-9. [DOI] [PubMed] [Google Scholar]
  2. Bond J. A. Some biotransformation enzymes responsible for polycyclic aromatic hydrocarbon metabolism in rat nasal turbinates: effects on enzyme activities of in vitro modifiers and intraperitoneal and inhalation exposure of rats to inducing agents. Cancer Res. 1983 Oct;43(10):4805–4811. [PubMed] [Google Scholar]
  3. Brittebo E., Brandt I. Metabolism of chlorobenzene in the mucosa of the murine respiratory tract. Lung. 1984;162(2):79–88. doi: 10.1007/BF02715634. [DOI] [PubMed] [Google Scholar]
  4. Brooker J. D., Srivastava G., Borthwick I. A., May B. K., Elliott W. H. Evidence that 2-allyl-2-isopropylacetamide, phenobarbital and 3,5-diethoxycarbonyl-1,4-dihydrocollidine induce the same cytochrome P450 mRNA in chick embryo liver. Eur J Biochem. 1983 Nov 2;136(2):327–332. doi: 10.1111/j.1432-1033.1983.tb07745.x. [DOI] [PubMed] [Google Scholar]
  5. Burke M. D., Mayer R. T. Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab Dispos. 1974 Nov-Dec;2(6):583–588. [PubMed] [Google Scholar]
  6. Chiang J. Y., Steggles A. W. Identification and partial purification of hamster microsomal cytochrome P-450 isoenzymes. Biochem Pharmacol. 1983 Apr 15;32(8):1389–1397. doi: 10.1016/0006-2952(83)90452-5. [DOI] [PubMed] [Google Scholar]
  7. Cousins M. J., Sharp J. H., Gourlay G. K., Adams J. F., Haynes W. D., Whitehead R. Hepatotoxicity and halothane metabolism in an animal model with application for human toxicity. Anaesth Intensive Care. 1979 Feb;7(1):9–24. doi: 10.1177/0310057X7900700102. [DOI] [PubMed] [Google Scholar]
  8. Dahl A. R., Hadley W. M. Formaldehyde production promoted by rat nasal cytochrome P-450-dependent monooxygenases with nasal decongestants, essences, solvents, air pollutants, nicotine, and cocaine as substrates. Toxicol Appl Pharmacol. 1983 Feb;67(2):200–205. doi: 10.1016/0041-008x(83)90225-9. [DOI] [PubMed] [Google Scholar]
  9. De Matteis F., Gibbs A. H., Farmer P. B., Lamb J. H. Liver production of N-alkylated porphyrins caused in mice by treatment with substituted dihydropyridines. Evidence that the alkyl group on the pyrrole nitrogen atom originates from the drug. FEBS Lett. 1981 Jul 6;129(2):328–331. doi: 10.1016/0014-5793(81)80194-9. [DOI] [PubMed] [Google Scholar]
  10. De Matteis F., Gibbs A. H., Hollands C. N-alkylation of the haem moiety of cytochrome P-450 caused by substituted dihydropyridines. Preferential attack of different pyrrole nitrogen atoms after induction of various cytochrome P-450 isoenzymes. Biochem J. 1983 May 1;211(2):455–461. doi: 10.1042/bj2110455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Matteis F., Gibbs A. H., Smith A. G. Inhibition of protohaem ferro-lyase by N-substituted porphyrins. Structural requirements for the inhibitory effect. Biochem J. 1980 Sep 1;189(3):645–648. doi: 10.1042/bj1890645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ferioli A., Harvey C., De Matteis F. Drug-induced accumulation of uroporphyrin in chicken hepatocyte cultures. Structural requirements for the effect and role of exogenous iron. Biochem J. 1984 Dec 15;224(3):769–777. doi: 10.1042/bj2240769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Foster J. R., Elcombe C. R., Boobis A. R., Davies D. S., Sesardic D., McQuade J., Robson R. T., Hayward C., Lock E. A. Immunocytochemical localization of cytochrome P-450 in hepatic and extra-hepatic tissues of the rat with a monoclonal antibody against cytochrome P-450 c. Biochem Pharmacol. 1986 Dec 15;35(24):4543–4554. doi: 10.1016/0006-2952(86)90777-x. [DOI] [PubMed] [Google Scholar]
  14. Grandchamp B., Deybach J. C., Grelier M., de Verneuil H., Nordmann Y. Studies of porphyrin synthesis in fibroblasts of patients with congenital erythropoietic porphyria and one patient with homozygous coproporphyria. Biochim Biophys Acta. 1980 May 22;629(3):577–586. doi: 10.1016/0304-4165(80)90163-4. [DOI] [PubMed] [Google Scholar]
  15. Hadley W. M., Dahl A. R., Benson J. M., Hahn F. F., McClellan R. O. Cytochrome P450 dependent monooxygenases in nasal epithelial membranes: effect of phenobarbital and benzo(A)pyrene. Proc West Pharmacol Soc. 1982;25:197–199. [PubMed] [Google Scholar]
  16. Halpert J. R., Miller N. E., Gorsky L. D. On the mechanism of the inactivation of the major phenobarbital-inducible isozyme of rat liver cytochrome P-450 by chloramphenicol. J Biol Chem. 1985 Jul 15;260(14):8397–8403. [PubMed] [Google Scholar]
  17. Hrycay E. G., O'Brien P. J. Cytochrome P-450 as a microsomal peroxidase utilizing a lipid peroxide substrate. Arch Biochem Biophys. 1971 Nov;147(1):14–27. doi: 10.1016/0003-9861(71)90304-3. [DOI] [PubMed] [Google Scholar]
  18. Krieter P. A., van Dyke R. A. Cytochrome P-450 and halothane metabolism. Decrease in rat liver microsomal P-450 in vitro. Chem Biol Interact. 1983 Jun;44(3):219–235. doi: 10.1016/0009-2797(83)90051-0. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lau P. P., Pickett C. B., Lu A. Y., Strobel H. W. Comparison of cytochromes P-450 with high activity toward benzo[a]pyrene purified from liver microsomes of beta-naphthoflavone and 3-methylcholanthrene-pretreated rats. Arch Biochem Biophys. 1982 Oct 15;218(2):472–477. doi: 10.1016/0003-9861(82)90369-1. [DOI] [PubMed] [Google Scholar]
  21. Longo V., Citti L., Gervasi P. G. Metabolism of diethylnitrosamine by nasal mucosa and hepatic microsomes from hamster and rat: species specificity of nasal mucosa. Carcinogenesis. 1986 Aug;7(8):1323–1328. doi: 10.1093/carcin/7.8.1323. [DOI] [PubMed] [Google Scholar]
  22. Ortiz de Montellano P. R., Beilan H. S., Kunze K. L. N-Alkylprotoporphyrin IX formation in 3,5-dicarbethoxy-1,4-dihydrocollidine-treated rats. Transfer of the alkyl group from the substrate to the porphyrin. J Biol Chem. 1981 Jul 10;256(13):6708–6713. [PubMed] [Google Scholar]
  23. Reed C. J., Lock E. A., De Matteis F. NADPH: cytochrome P-450 reductase in olfactory epithelium. Relevance to cytochrome P-450-dependent reactions. Biochem J. 1986 Dec 1;240(2):585–592. doi: 10.1042/bj2400585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rifkind A. B. Maintenance of microsomal hemoprotein concentrations following inhibition of ferrochelatase activity by 3,5-diethoxycarbonyl-1,4-dihydrocollidine in chick embryo liver. J Biol Chem. 1979 Jun 10;254(11):4636–4644. [PubMed] [Google Scholar]
  25. Sipes I. G., Gandolfi A. J., Pohl L. R., Krishna G., Brown B. R., Jr Comparison of the biotransformation and hepatotoxicity of halothane and deuterated halothane. J Pharmacol Exp Ther. 1980 Sep;214(3):716–720. [PubMed] [Google Scholar]
  26. Smith J. H., Rush G. F., Hook J. B. Induction of renal and hepatic mixed function oxidases in the hamster and guinea pig. Toxicology. 1986 Feb;38(2):209–218. doi: 10.1016/0300-483x(86)90122-8. [DOI] [PubMed] [Google Scholar]
  27. Tephly T. R., Coffman B. L., Ingall G., Ziet-Har M. S., Goff H. M., Tabba H. D., Smith K. M. Identification of N-methylprotoporphyrin IX in livers of untreated mice and mice treated with 3, 5-diethoxycarbonyl- 1, 4-dihydrocollidine: source of the methyl group. Arch Biochem Biophys. 1981 Nov;212(1):120–126. doi: 10.1016/0003-9861(81)90350-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES