Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Oct 15;271(2):407–413. doi: 10.1042/bj2710407

Characterization of an actin-myosin head interface in the 40-113 region of actin using specific antibodies as probes.

J P Labbé 1, C Méjean 1, Y Benyamin 1, C Roustan 1
PMCID: PMC1149569  PMID: 2146951

Abstract

Evidence for the participation of the 1-7 and 18-28 N-terminal sequences of actin at different steps of actin-myosin interaction process is well documented in the literature. Cross-linking of the rigor complex between filamentous actin and skeletal-muscle myosin subfragment 1 was accomplished by the carboxy-group-directed zero-length protein cross-linker, 1-ethyl-3-[3-(dimethylamino)propyl]carbodi-imide. After chaotropic depolymerization and thrombin digestion, which cleaves only actin, the covalent complex with Mr 100,000 was characterized by PAGE. The linkage was identified as being between myosin subfragment 1 (S-1) heavy chain and actin-(1-28)-peptide. The purified complex retained in toto its ability to combine reversibly with fresh filamentous actin, but showed a decrease in the Vmax. of actin-dependent Mg2(+)-ATPase. By using e.l.i.s.a., S-1 was observed to bind to coated monomeric actin or its 1-226 N-terminal peptide. This interaction strongly interfered with the binding of antibodies directed against the 95-113 actin sequence. Moreover, S-1 was able to bind with coated purified actin-(40-113)-peptide. Finally, antibodies directed against the 18-28 and 95-113 actin sequence, which strongly interfered with S1 binding, were unable to compete with each other. These results suggest that two topologically independent regions are involved in the actin-myosin interface: one located in the conserved 18-28 sequence and the other near residues 95-113, including the variable residue at position 89. Other experiments support the 'multisite interface model', where the two actin sites could modulate each other during S-1 interaction.

Full text

PDF
407

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L. A., Huxley H. E., Holmes K. C., Goody R. S., Taylor K. A. Structural evidence that myosin heads may interact with two sites on F-actin. Nature. 1982 Sep 30;299(5882):467–469. doi: 10.1038/299467a0. [DOI] [PubMed] [Google Scholar]
  2. Ando T. Propagation of Acto-S-1 ATPase reaction-coupled conformational change in actin along the filament. J Biochem. 1989 May;105(5):818–822. doi: 10.1093/oxfordjournals.jbchem.a122751. [DOI] [PubMed] [Google Scholar]
  3. Benyamin Y., Roustan C., Boyer M. Anti-actin antibodies. Chemical modification allows the selective production of antibodies to the N-terminal region. J Immunol Methods. 1986 Jan 22;86(1):21–29. doi: 10.1016/0022-1759(86)90260-7. [DOI] [PubMed] [Google Scholar]
  4. Bertrand R., Chaussepied P., Kassab R., Boyer M., Roustan C., Benyamin Y. Cross-linking of the skeletal myosin subfragment 1 heavy chain to the N-terminal actin segment of residues 40-113. Biochemistry. 1988 Jul 26;27(15):5728–5736. doi: 10.1021/bi00415a050. [DOI] [PubMed] [Google Scholar]
  5. Bottomley R. C., Trayer I. P. Affinity chromatography of immobilized actin and myosin. Biochem J. 1975 Aug;149(2):365–379. doi: 10.1042/bj1490365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyer M., Feinberg J., Hue H. K., Capony J. P., Benyamin Y., Roustan C. Antigenic probes locate a serum-gelsolin-interaction site on the C-terminal part of actin. Biochem J. 1987 Dec 1;248(2):359–364. doi: 10.1042/bj2480359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boyer M., Roustan C., Benyamin Y. DNAse I-actin complex: an immunological study. Biosci Rep. 1985 Jan;5(1):39–46. doi: 10.1007/BF01117439. [DOI] [PubMed] [Google Scholar]
  8. Chantler P. D., Gratzer W. B. Interaction of myosin with monomeric matrix-bound actin. FEBS Lett. 1973 Aug 1;34(1):10–14. doi: 10.1016/0014-5793(73)80691-x. [DOI] [PubMed] [Google Scholar]
  9. Chaussepied P., Kasprzak A. A. Isolation and characterization of the G-actin-myosin head complex. Nature. 1989 Dec 21;342(6252):950–953. doi: 10.1038/342950a0. [DOI] [PubMed] [Google Scholar]
  10. Chaussepied P., Mornet D., Audemard E., Derancourt J., Kassab R. Abolition of ATPase activities of skeletal myosin subfragment 1 by a new selective proteolytic cleavage within the 50-kilodalton heavy chain segment. Biochemistry. 1986 Mar 11;25(5):1134–1140. doi: 10.1021/bi00353a028. [DOI] [PubMed] [Google Scholar]
  11. DasGupta G., Reisler E. Antibody against the amino terminus of alpha-actin inhibits actomyosin interactions in the presence of ATP. J Mol Biol. 1989 Jun 20;207(4):833–836. doi: 10.1016/0022-2836(89)90249-0. [DOI] [PubMed] [Google Scholar]
  12. Eisenberg E., Kielley W. W. Troponin-tropomyosin complex. Column chromatographic separation and activity of the three, active troponin components with and without tropomyosin present. J Biol Chem. 1974 Aug 10;249(15):4742–4748. [PubMed] [Google Scholar]
  13. Henry G. D., Winstanley M. A., Dalgarno D. C., Scott G. M., Levine B. A., Trayer I. P. Characterization of the actin-binding site on the alkali light chain of myosin. Biochim Biophys Acta. 1985 Aug 23;830(3):233–243. doi: 10.1016/0167-4838(85)90279-1. [DOI] [PubMed] [Google Scholar]
  14. Hue H. K., Benyamin Y., Roustan C. Comparative study of invertebrate actins: antigenic cross-reactivity versus sequence variability. J Muscle Res Cell Motil. 1989 Apr;10(2):135–142. doi: 10.1007/BF01739969. [DOI] [PubMed] [Google Scholar]
  15. Hue H. K., Labbé J. P., Harricane M. C., Cavadore J. C., Benyamin Y., Roustan C. Structural and functional variations in skeletal-muscle and scallop muscle actins. Biochem J. 1988 Dec 15;256(3):853–859. doi: 10.1042/bj2560853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kabsch W., Mannherz H. G., Suck D. Three-dimensional structure of the complex of actin and DNase I at 4.5 A resolution. EMBO J. 1985 Aug;4(8):2113–2118. doi: 10.1002/j.1460-2075.1985.tb03900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Konno K. Functional, chymotryptically split actin and its interaction with myosin subfragment 1. Biochemistry. 1987 Jun 16;26(12):3582–3589. doi: 10.1021/bi00386a050. [DOI] [PubMed] [Google Scholar]
  18. Labbé J. P., Audemard E., Bertrand R., Kassab R. Specific interactions of the alkali light chain 1 in skeletal myosin heads probed by chemical cross-linking. Biochemistry. 1986 Dec 16;25(25):8325–8330. doi: 10.1021/bi00373a029. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Marden M. C., Bohn B., Kister J., Poyart C. Effectors of hemoglobin. Separation of allosteric and affinity factors. Biophys J. 1990 Mar;57(3):397–403. doi: 10.1016/S0006-3495(90)82556-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mejean C., Boyer M., Labbé J. P., Marlier L., Benyamin Y., Roustan C. Anti-actin antibodies. An immunological approach to the myosin-actin and the tropomyosin-actin interfaces. Biochem J. 1987 Jun 15;244(3):571–577. doi: 10.1042/bj2440571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller L., Kalnoski M., Yunossi Z., Bulinski J. C., Reisler E. Antibodies directed against N-terminal residues on actin do not block acto-myosin binding. Biochemistry. 1987 Sep 22;26(19):6064–6070. doi: 10.1021/bi00393a018. [DOI] [PubMed] [Google Scholar]
  23. Milligan R. A., Flicker P. F. Structural relationships of actin, myosin, and tropomyosin revealed by cryo-electron microscopy. J Cell Biol. 1987 Jul;105(1):29–39. doi: 10.1083/jcb.105.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moir A. J., Levine B. A. Protein cognitive sites on the surface of actin. A proton NMR study. J Inorg Biochem. 1986 Oct-Nov;28(2-3):271–278. doi: 10.1016/0162-0134(86)80091-5. [DOI] [PubMed] [Google Scholar]
  25. Mornet D., Pantel P., Audemard E., Kassab R. Involvement of an arginyl residue in the catalytic activity of myosin heads. Eur J Biochem. 1979 Oct 15;100(2):421–431. doi: 10.1111/j.1432-1033.1979.tb04185.x. [DOI] [PubMed] [Google Scholar]
  26. Mornet D., Pantel P., Bertrand R., Audemard E., Kassab R. Isolation and characterization of the trypsin-modified myosin -S1 derivatives. FEBS Lett. 1981 Jan 12;123(1):54–58. doi: 10.1016/0014-5793(81)80018-x. [DOI] [PubMed] [Google Scholar]
  27. Muszbek L., Gladner J. A., Laki K. The fragmentation of actin by thrombin. Isolation and characterization of the split products. Arch Biochem Biophys. 1975 Mar;167(1):99–103. doi: 10.1016/0003-9861(75)90445-2. [DOI] [PubMed] [Google Scholar]
  28. Méjean C., Boyer M., Labbé J. P., Derancourt J., Benyamin Y., Roustan C. Antigenic probes locate the myosin subfragment 1 interaction site on the N-terminal part of actin. Biosci Rep. 1986 May;6(5):493–499. doi: 10.1007/BF01116141. [DOI] [PubMed] [Google Scholar]
  29. Méjean C., Hué H. K., Pons F., Roustan C., Benyamin Y. Cation binding sites on actin: a structural relationship between antigenic epitopes and cation exchange. Biochem Biophys Res Commun. 1988 Apr 15;152(1):368–375. doi: 10.1016/s0006-291x(88)80723-x. [DOI] [PubMed] [Google Scholar]
  30. Robin Y., Benyamin Y., Thoai N. V. Existence of homologous antigenic structures in unfolded creatine kinase and arginine kinase. FEBS Lett. 1976 Mar 15;63(1):174–178. doi: 10.1016/0014-5793(76)80220-7. [DOI] [PubMed] [Google Scholar]
  31. Rouayrenc J. F., Bertrand R., Kassab R., Walzthöny D., Bähler M., Wallimann T. Further characterization of the structural and functional properties of the cross-linked complex between F-actin and myosin S-1. Eur J Biochem. 1985 Jan 15;146(2):391–401. doi: 10.1111/j.1432-1033.1985.tb08665.x. [DOI] [PubMed] [Google Scholar]
  32. Roustan C., Benyamin Y., Boyer M., Bertrand R., Audemard E., Jauregui-Adell J. Conformational changes induced by Mg2+ on actin monomers. An immunologic attempt to localize the affected region. FEBS Lett. 1985 Feb 11;181(1):119–123. doi: 10.1016/0014-5793(85)81125-x. [DOI] [PubMed] [Google Scholar]
  33. Roustan C., Benyamin Y., Boyer M., Cavadore J. C. Structural variations in actins. A study of the immunological reactivity of the N-terminal region. Biochem J. 1986 Jan 1;233(1):193–197. doi: 10.1042/bj2330193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roustan C., Boyer M., Fattoum A., Jeanneau R., Benyamin Y., Roger M., Pradel L. A. Isolation and structural properties of a high-molecular-weight actin-binding protein (filamin-like protein) in hog thyroid gland. Eur J Biochem. 1982 Dec;129(1):149–155. doi: 10.1111/j.1432-1033.1982.tb07033.x. [DOI] [PubMed] [Google Scholar]
  35. Strzelecka-Golaszewska H., Sobieszek A. Activation of smooth muscle myosin by smooth and skeletal muscle actins. FEBS Lett. 1981 Nov 16;134(2):197–202. doi: 10.1016/0014-5793(81)80601-1. [DOI] [PubMed] [Google Scholar]
  36. Sutoh K. Identification of myosin-binding sites on the actin sequence. Biochemistry. 1982 Jul 20;21(15):3654–3661. doi: 10.1021/bi00258a020. [DOI] [PubMed] [Google Scholar]
  37. Sutoh K. Mapping of actin-binding sites on the heavy chain of myosin subfragment 1. Biochemistry. 1983 Mar 29;22(7):1579–1585. doi: 10.1021/bi00276a009. [DOI] [PubMed] [Google Scholar]
  38. Toyoshima C., Wakabayashi T. Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle. V. Assignment of actin in the actin-tropomyosin-myosin subfragment-1 complex. J Biochem. 1985 Jan;97(1):245–263. doi: 10.1093/oxfordjournals.jbchem.a135049. [DOI] [PubMed] [Google Scholar]
  39. Weeds A. G., Taylor R. S. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54–56. doi: 10.1038/257054a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES