Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Oct 15;271(2):449–455. doi: 10.1042/bj2710449

Primary structure and activity of mouse methylmalonyl-CoA mutase.

M F Wilkemeyer 1, A M Crane 1, F D Ledley 1
PMCID: PMC1149575  PMID: 1978672

Abstract

Methylmalonyl-CoA mutase (MCM) is an adenosylcobalamin-dependent enzyme that catalyses isomerization between methylmalonyl-CoA and succinyl-CoA (3-carboxypropionyl-CoA). Genetic deficiency of this enzyme in man causes an often fatal disorder of organic acid metabolism termed mut methylmalonicacidaemia. We report cloning of a mouse MCM cDNA and the characterization of its primary structure and biological function. Mouse MCM in fibroblasts and crude liver extracts exhibits activity and reaction kinetics similar to those of the human enzyme. The predicted amino acid sequence of mouse MCM exhibits 94% identity with its human homologue and considerable identity with a prokaryotic MCM. Transfection of the mouse cDNA into cultured cells constitutes an active apoenzyme and can complement genetic deficiency of the apoenzyme in cells from patients with mut methylmalonicacidaemia. These results establish that mouse MCM is homologous to human MCM in structure and function and provides a basis for using the mouse as a model for studying this enzyme and its deficiency state.

Full text

PDF
449

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergman E. N., Roe W. E., Kon K. Quantitative aspects of propionate metabolism and gluconeogenesis in sheep. Am J Physiol. 1966 Sep;211(3):793–799. doi: 10.1152/ajplegacy.1966.211.3.793. [DOI] [PubMed] [Google Scholar]
  2. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fenton W. A., Hack A. M., Willard H. F., Gertler A., Rosenberg L. E. Purification and properties of methylmalonyl coenzyme A mutase from human liver. Arch Biochem Biophys. 1982 Apr 1;214(2):815–823. doi: 10.1016/0003-9861(82)90088-1. [DOI] [PubMed] [Google Scholar]
  4. Francalanci F., Davis N. K., Fuller J. Q., Murfitt D., Leadlay P. F. The subunit structure of methylmalonyl-CoA mutase from Propionibacterium shermanii. Biochem J. 1986 Jun 1;236(2):489–494. doi: 10.1042/bj2360489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giudici T. A., Chen R. G., Oizumi J., Shaw K. N., Ng W. G., Donnell G. N. Methylmalonic and propionic acidemias: lipid profiles of normal and affected human skin fibroblasts incubated with [1-14C]propionate. Biochem Med Metab Biol. 1986 Jun;35(3):384–398. doi: 10.1016/0885-4505(86)90097-6. [DOI] [PubMed] [Google Scholar]
  6. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  7. Hunaiti A. A., Kolattukudy P. E. Source of methylmalonyl-coenzyme A for erythromycin synthesis: methylmalonyl-coenzyme A mutase from Streptomyces erythreus. Antimicrob Agents Chemother. 1984 Feb;25(2):173–178. doi: 10.1128/aac.25.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jansen R., Kalousek F., Fenton W. A., Rosenberg L. E., Ledley F. D. Cloning of full-length methylmalonyl-CoA mutase from a cDNA library using the polymerase chain reaction. Genomics. 1989 Feb;4(2):198–205. doi: 10.1016/0888-7543(89)90300-5. [DOI] [PubMed] [Google Scholar]
  9. Kalousek F., Hendrick J. P., Rosenberg L. E. Two mitochondrial matrix proteases act sequentially in the processing of mammalian matrix enzymes. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7536–7540. doi: 10.1073/pnas.85.20.7536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaufman R. J. Identification of the components necessary for adenovirus translational control and their utilization in cDNA expression vectors. Proc Natl Acad Sci U S A. 1985 Feb;82(3):689–693. doi: 10.1073/pnas.82.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kolhouse J. F., Stabler S. P., Allen R. H. L-methylmalonyl-CoA mutase from human placenta. Methods Enzymol. 1988;166:407–414. doi: 10.1016/s0076-6879(88)66053-8. [DOI] [PubMed] [Google Scholar]
  12. Kolhouse J. F., Utley C., Allen R. H. Isolation and characterization of methylmalonyl-CoA mutase from human placenta. J Biol Chem. 1980 Apr 10;255(7):2708–2712. [PubMed] [Google Scholar]
  13. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  14. Ledley F. D., Crane A. M., Lumetta M. Heterogeneous alleles and expression of methylmalonyl CoA mutase in mut methylmalonic acidemia. Am J Hum Genet. 1990 Mar;46(3):539–547. [PMC free article] [PubMed] [Google Scholar]
  15. Ledley F. D., Jansen R., Nham S. U., Fenton W. A., Rosenberg L. E. Mutation eliminating mitochondrial leader sequence of methylmalonyl-CoA mutase causes muto methylmalonic acidemia. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3147–3150. doi: 10.1073/pnas.87.8.3147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ledley F. D., Lumetta M., Nguyen P. N., Kolhouse J. F., Allen R. H. Molecular cloning of L-methylmalonyl-CoA mutase: gene transfer and analysis of mut cell lines. Proc Natl Acad Sci U S A. 1988 May;85(10):3518–3521. doi: 10.1073/pnas.85.10.3518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leng R. A., Steel J. W., Luick J. R. Contribution of propionate to glucose synthesis in sheep. Biochem J. 1967 Jun;103(3):785–790. doi: 10.1042/bj1030785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lockyer J., Cook R. G., Milstien S., Kaufman S., Woo S. L., Ledley F. D. Structure and expression of human dihydropteridine reductase. Proc Natl Acad Sci U S A. 1987 May;84(10):3329–3333. doi: 10.1073/pnas.84.10.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MacGregor G. R., Caskey C. T. Construction of plasmids that express E. coli beta-galactosidase in mammalian cells. Nucleic Acids Res. 1989 Mar 25;17(6):2365–2365. doi: 10.1093/nar/17.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marsh E. N., McKie N., Davis N. K., Leadlay P. F. Cloning and structural characterization of the genes coding for adenosylcobalamin-dependent methylmalonyl-CoA mutase from Propionibacterium shermanii. Biochem J. 1989 Jun 1;260(2):345–352. doi: 10.1042/bj2600345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marsh N., Leadlay P. F., Evans P. R. Crystallization and preliminary diffraction data for adenosylcobalamin-dependent methylmalonyl-CoA mutase from Propionibacterium shermanii. J Mol Biol. 1988 Mar 20;200(2):421–422. doi: 10.1016/0022-2836(88)90252-5. [DOI] [PubMed] [Google Scholar]
  22. Mellon P., Parker V., Gluzman Y., Maniatis T. Identification of DNA sequences required for transcription of the human alpha 1-globin gene in a new SV40 host-vector system. Cell. 1981 Dec;27(2 Pt 1):279–288. doi: 10.1016/0092-8674(81)90411-6. [DOI] [PubMed] [Google Scholar]
  23. Morrow G., 3rd, Revsin B., Mathews C., Giles H. A simple, rapid method for prenatal detection of defects in propionate metabolism. Clin Genet. 1976 Oct;10(4):218–221. doi: 10.1111/j.1399-0004.1976.tb00037.x. [DOI] [PubMed] [Google Scholar]
  24. Murthy V. V., Jones E., Cole T. W., Jr, Johnson J., Jr Purification of methylmalonyl-CoA mutase from Propionibacterium shermanii using affinity chromatography. Biochim Biophys Acta. 1977 Aug 11;483(2):487–491. doi: 10.1016/0005-2744(77)90079-1. [DOI] [PubMed] [Google Scholar]
  25. Pietrzak S. M., Saz H. J. Succinate decarboxylation to propionate and the associated phosphorylation in Fasciola hepatica and Spirometra mansonoides. Mol Biochem Parasitol. 1981 May;3(1):61–70. doi: 10.1016/0166-6851(81)90078-5. [DOI] [PubMed] [Google Scholar]
  26. Roise D., Schatz G. Mitochondrial presequences. J Biol Chem. 1988 Apr 5;263(10):4509–4511. [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shigekawa K., Dower W. J. Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells. Biotechniques. 1988 Sep;6(8):742–751. [PubMed] [Google Scholar]
  29. Ueda S., Sato K., Shimizu S. Role of vitamin B12 and enzymes related to methylmalonyl-CoA mutase in a methanol-utilizing bacterium, Protaminobacter ruber. J Nutr Sci Vitaminol (Tokyo) 1978;24(5):477–489. doi: 10.3177/jnsv.24.477. [DOI] [PubMed] [Google Scholar]
  30. Willard H. F., Ambani L. M., Hart A. C., Mahoney M. J., Rosenberg L. E. Rapid prenatal and postnatal detection of inborn errors of propionate, methylmalonate, and cobalamin metabolism: a sensitive assay using cultured cells. Hum Genet. 1976 Dec 15;34(3):277–283. doi: 10.1007/BF00295291. [DOI] [PubMed] [Google Scholar]
  31. van der Westhuyzen J., Cantrill R. C., Fernandes-Costa F., Metz J. Effect of a vitamin B-12-deficient diet on lipid and fatty acid composition of spinal cord myelin in the fruit bat. J Nutr. 1983 Mar;113(3):531–537. doi: 10.1093/jn/113.3.531. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES