Abstract
Spontaneous decomposition of 5-phosphoribosyl 1-pyrophosphate at pH 5.5 was established to occur as follows: 5-Phosphoribosyl 1-pyrophosphate----5-phosphoribosyl 1,2-(cyclic)phosphate----ribose 1-phosphate----ribose Enzymic degradation of 5-phosphoribosyl 1-pyrophosphate by alkaline phosphatase from calf intestine and by acid phosphatases from potato and Aspergillus niger was found to proceed according to this pathway within the pH range 2.5-7.4 with accumulation of ribose 1-phosphate. In the case of alkaline phosphatase, Mg2+ ions inhibit the pyrophosphorolysis of 5-phosphoribosyl 1-pyrophosphate and stimulate the hydrolysis of ribose 1-phosphate.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bontemps F., Van den Berghe G., Hers H. G. Pathways of adenine nucleotide catabolism in human erythrocytes. Adv Exp Med Biol. 1986;195(Pt B):329–336. doi: 10.1007/978-1-4684-1248-2_53. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chappelet-Tordo D., Fosset M., Iwatsubo M., Gache C., Lazdunski M. Intestinal alkaline phosphatase. Catalytic properties and half of the sites reactivity. Biochemistry. 1974 Apr 23;13(9):1788–1795. doi: 10.1021/bi00706a002. [DOI] [PubMed] [Google Scholar]
- Fox I. H., Marchant P. J. Phosphoribosyl pyrophosphate degradation in human tissues. Can J Biochem. 1974 Dec;52(12):1162–1166. doi: 10.1139/o74-161. [DOI] [PubMed] [Google Scholar]
- Gini S., Simonelli C., Ipata P. L. Studies on IMP degradation and ribose 1-phosphate utilization in human erythrocytes. Int J Biochem. 1987;19(8):699–703. doi: 10.1016/0020-711x(87)90083-8. [DOI] [PubMed] [Google Scholar]
- HEPPEL L. A., HARKNESS D. R., HILMOE R. J. A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J Biol Chem. 1962 Mar;237:841–846. [PubMed] [Google Scholar]
- Hiwada K., Wachsmuth E. D. Catalytic properties of alkaline phosphatase from pig kidney. Biochem J. 1974 Jul;141(1):283–291. doi: 10.1042/bj1410283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu R. Y., Cleland W. W., Anderson L. Mechanism of action of the nonspecific phosphomonoesterase from potatoes. Biochemistry. 1966 Feb;5(2):799–807. doi: 10.1021/bi00866a055. [DOI] [PubMed] [Google Scholar]
- KHORANA H. G., FERNANDES J. F., KORNBERG A. Pyrophosphorylation of ribose 5-phosphate in the enzymatic synthesis of 5-phosphorylribose 1-pyrophosphate. J Biol Chem. 1958 Feb;230(2):941–948. [PubMed] [Google Scholar]
- KORNBERG A., LIEBERMAN I., SIMMS E. S. Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J Biol Chem. 1955 Jul;215(1):389–402. [PubMed] [Google Scholar]
- Kelley W. N., Rosenbloom F. M., Henderson J. F., Seegmiller J. E. A specific enzyme defect in gout associated with overproduction of uric acid. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1735–1739. doi: 10.1073/pnas.57.6.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmonds H. A., Watson A. R., Webster D. R., Sahota A., Perrett D. GTP depletion and other erythrocyte abnormalities in inherited PNP deficiency. Biochem Pharmacol. 1982 Mar 15;31(6):941–946. doi: 10.1016/0006-2952(82)90324-0. [DOI] [PubMed] [Google Scholar]
- Tax W. J., Veerkamp J. H. Phosphoribosylpyrophosphate in erythrocytes of ten mammalian species: concentration, synthesis and degradation. Comp Biochem Physiol B. 1978;59(3):219–222. doi: 10.1016/0305-0491(78)90250-x. [DOI] [PubMed] [Google Scholar]
- Whelan J. M., Bagnara A. S. Factors affecting the rate of purine ribonucleotide dephosphorylation in human erythrocytes. Biochim Biophys Acta. 1979 Jul 26;563(2):466–478. doi: 10.1016/0005-2787(79)90065-0. [DOI] [PubMed] [Google Scholar]