Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Nov 1;271(3):627–634. doi: 10.1042/bj2710627

Measurement of matrix free Mg2+ concentration in rat heart mitochondria by using entrapped fluorescent probes.

G A Rutter 1, N J Osbaldeston 1, J G McCormack 1, R M Denton 1
PMCID: PMC1149608  PMID: 2244870

Abstract

1. The concentration of free Mg2+ ([Mg2+]m) within the matrix of isolated rat heart mitochondria was measured after loading of the mitochondria with the fluorescent Mg2+ indicators mag-indo-1 and mag-fura-2. No detectable change in total mitochondrial magnesium content occurred during loading with the indicators. Apparent Kd values for Mg2+ of 3.7 mM and 2.3 mM were obtained for mag-indo-1 and mag-fura-2 respectively within mitochondria permeabilized to bivalent cations with ionomycin and the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. These values are 2.7- and 1.8-fold greater respectively than those obtained for the free acid forms of the dyes in incubation medium. 2. Based on the above Kd values, mitochondrial matrix Mg2+ concentrations were found to lie in the range 0.8-1.5 mM in the absence, or immediately after the addition, of a respiratory substrate. 3. Incubation of mitochondria in the presence of respiratory substrate, but in the absence of external Mg2+, led to a time-dependent decline in [Mg2+]m to about half the initial values after 5 min. This was accompanied by a fall in the total mitochondrial magnesium content from 12.7 to 7.0 nmol/mg of protein. 4. ADP (0.5 mM), ATP (0.5 mM) or 10 mM-NaCl had no significant effect on the fall in [Mg2+], whereas 1 microM-nigericin blocked, and 0.3 microM-valinomycin accelerated, the fall. 5. External Mg2+ concentrations above 1 mM progressively inhibited and reversed the decline in free and total mitochondrial Mg2+.

Full text

PDF
627

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E. Inhibition and stimulation of respiration-linked Mg2+ efflux in rat heart mitochondria. J Bioenerg Biomembr. 1981 Aug;13(3-4):133–139. doi: 10.1007/BF00763835. [DOI] [PubMed] [Google Scholar]
  2. Brierley G. P., Davis M. H., Jung D. W. Respiration-dependent contraction of swollen heart mitochondria: participation of the K+/H+ antiporter. J Bioenerg Biomembr. 1988 Apr;20(2):229–242. doi: 10.1007/BF00768396. [DOI] [PubMed] [Google Scholar]
  3. Brierley G. P., Davis M., Jung D. W. Respiration-dependent uptake and extrusion of Mg2+ by isolated heart mitochondria. Arch Biochem Biophys. 1987 Mar;253(2):322–332. doi: 10.1016/0003-9861(87)90185-8. [DOI] [PubMed] [Google Scholar]
  4. Cobbold P. H., Rink T. J. Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J. 1987 Dec 1;248(2):313–328. doi: 10.1042/bj2480313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Corkey B. E., Duszynski J., Rich T. L., Matschinsky B., Williamson J. R. Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. J Biol Chem. 1986 Feb 25;261(6):2567–2574. [PubMed] [Google Scholar]
  6. Crompton M., Capano M., Carafoli E. Respiration-dependent efflux of magnesium ions from heart mitochondria. Biochem J. 1976 Mar 15;154(3):735–742. doi: 10.1042/bj1540735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davidson A. M., Halestrap A. P. Inhibition of mitochondrial-matrix inorganic pyrophosphatase by physiological [Ca2+], and its role in the hormonal regulation of mitochondrial matrix volume. Biochem J. 1989 Mar 15;258(3):817–821. doi: 10.1042/bj2580817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis M. H., Altschuld R. A., Jung D. W., Brierley G. P. Estimation of intramitochondrial pCa and pH by fura-2 and 2,7 biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) fluorescence. Biochem Biophys Res Commun. 1987 Nov 30;149(1):40–45. doi: 10.1016/0006-291x(87)91602-0. [DOI] [PubMed] [Google Scholar]
  9. Denton R. M., McCormack J. G., Edgell N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107–117. doi: 10.1042/bj1900107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Diwan J. J. Mitochondrial transport of K+ and Mg2+. Biochim Biophys Acta. 1987;895(3):155–165. doi: 10.1016/s0304-4173(87)80001-0. [DOI] [PubMed] [Google Scholar]
  11. Garfinkel D., Kohn M. C., Achs M. J. Computer simulation of metabolism in pyruvate-perfused rat heart. V. Physiological implications. Am J Physiol. 1979 Sep;237(3):R181–R186. doi: 10.1152/ajpregu.1979.237.3.R181. [DOI] [PubMed] [Google Scholar]
  12. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  13. Halestrap A. P. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta. 1989 Mar 23;973(3):355–382. doi: 10.1016/s0005-2728(89)80378-0. [DOI] [PubMed] [Google Scholar]
  14. Jung D. W., Apel L., Brierley G. P. Matrix free Mg2+ changes with metabolic state in isolated heart mitochondria. Biochemistry. 1990 May 1;29(17):4121–4128. doi: 10.1021/bi00469a015. [DOI] [PubMed] [Google Scholar]
  15. Jung D. W., Brierley G. P. Matrix magnesium and the permeability of heart mitochondria to potassium ion. J Biol Chem. 1986 May 15;261(14):6408–6415. [PubMed] [Google Scholar]
  16. Lukács G. L., Kapus A. Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin2. Biochem J. 1987 Dec 1;248(2):609–613. doi: 10.1042/bj2480609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marshall S. E., McCormack J. G., Denton R. M. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat epididymal adipose tissue. Evidence against a role for Ca2+ in the activation of pyruvate dehydrogenase by insulin. Biochem J. 1984 Feb 15;218(1):249–260. doi: 10.1042/bj2180249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McCormack J. G., Browne H. M., Dawes N. J. Studies on mitochondrial Ca2+-transport and matrix Ca2+ using fura-2-loaded rat heart mitochondria. Biochim Biophys Acta. 1989 Mar 23;973(3):420–427. doi: 10.1016/s0005-2728(89)80384-6. [DOI] [PubMed] [Google Scholar]
  19. McCormack J. G., Denton R. M. Influence of calcium ions on mammalian intramitochondrial dehydrogenases. Methods Enzymol. 1989;174:95–118. doi: 10.1016/0076-6879(89)74013-1. [DOI] [PubMed] [Google Scholar]
  20. McCormack J. G., Denton R. M. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J. 1979 Jun 15;180(3):533–544. doi: 10.1042/bj1800533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCormack J. G., Halestrap A. P., Denton R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990 Apr;70(2):391–425. doi: 10.1152/physrev.1990.70.2.391. [DOI] [PubMed] [Google Scholar]
  22. Midgley P. J., Rutter G. A., Thomas A. P., Denton R. M. Effects of Ca2+ and Mg2+ on the activity of pyruvate dehydrogenase phosphate phosphatase within toluene-permeabilized mitochondria. Biochem J. 1987 Jan 15;241(2):371–377. doi: 10.1042/bj2410371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moreno-Sánchez R., Hansford R. G. Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration. Biochem J. 1988 Dec 1;256(2):403–412. doi: 10.1042/bj2560403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murphy E., Freudenrich C. C., Levy L. A., London R. E., Lieberman M. Monitoring cytosolic free magnesium in cultured chicken heart cells by use of the fluorescent indicator Furaptra. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2981–2984. doi: 10.1073/pnas.86.8.2981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Raju B., Murphy E., Levy L. A., Hall R. D., London R. E. A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol. 1989 Mar;256(3 Pt 1):C540–C548. doi: 10.1152/ajpcell.1989.256.3.C540. [DOI] [PubMed] [Google Scholar]
  26. Reers M., Kelly R. A., Smith T. W. Calcium and proton activities in rat cardiac mitochondria. Effect of matrix environment on behaviour of fluorescent probes. Biochem J. 1989 Jan 1;257(1):131–142. doi: 10.1042/bj2570131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rutter G. A., Denton R. M. Rapid purification of pig heart NAD+-isocitrate dehydrogenase. Studies on the regulation of activity by Ca2+, adenine nucleotides, Mg2+ and other metal ions. Biochem J. 1989 Oct 15;263(2):445–452. doi: 10.1042/bj2630445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rutter G. A., Denton R. M. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem J. 1988 May 15;252(1):181–189. doi: 10.1042/bj2520181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rutter G. A., Midgley P. J., Denton R. M. Regulation of the pyruvate dehydrogenase complex by Ca2+ within toluene-permeabilized heart mitochondria. Biochim Biophys Acta. 1989 Dec 14;1014(3):263–270. doi: 10.1016/0167-4889(89)90222-x. [DOI] [PubMed] [Google Scholar]
  30. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  31. Thomas A. P., Denton R. M. Use of toluene-permeabilized mitochondria to study the regulation of adipose tissue pyruvate dehydrogenase in situ. Further evidence that insulin acts through stimulation of pyruvate dehydrogenase phosphate phosphatase. Biochem J. 1986 Aug 15;238(1):93–101. doi: 10.1042/bj2380093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thomas A. P., Diggle T. A., Denton R. M. Sensitivity of pyruvate dehydrogenase phosphate phosphatase to magnesium ions. Similar effects of spermine and insulin. Biochem J. 1986 Aug 15;238(1):83–91. doi: 10.1042/bj2380083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tischler M. E., Friedrichs D., Coll K., Williamson J. R. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch Biochem Biophys. 1977 Nov;184(1):222–236. doi: 10.1016/0003-9861(77)90346-0. [DOI] [PubMed] [Google Scholar]
  34. Wan B., LaNoue K. F., Cheung J. Y., Scaduto R. C., Jr Regulation of citric acid cycle by calcium. J Biol Chem. 1989 Aug 15;264(23):13430–13439. [PubMed] [Google Scholar]
  35. Williams D. A., Fay F. S. Intracellular calibration of the fluorescent calcium indicator Fura-2. Cell Calcium. 1990 Feb-Mar;11(2-3):75–83. doi: 10.1016/0143-4160(90)90061-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES