Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Dec 1;272(2):323–326. doi: 10.1042/bj2720323

Neutral-sugar transport by rat liver lysosomes.

A J Jonas 1, P Conrad 1, H Jobe 1
PMCID: PMC1149702  PMID: 2268262

Abstract

Transport of D-glucose was studied in Percoll-gradient-purified rat liver lysosomes. D-Glucose uptake had a Km of 22 mM and a t1/2 of approx. 30 s. D-Fucose, 2-deoxyglucose and methyl alpha-glucoside were the most effective competitors for uptake of D-glucose, although D-galactose, D-mannose, D-xylose and L-fucose also appeared to compete for uptake. L-Glucose was a poor competitor for uptake. No competition was observed with N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucuronic acid, N-acetylneuraminic acid, D-glucosamine or the amino acids L-glycine, L-lysine and L-proline. Uptake was unaffected by N-ethylmaleimide, dithiothreitol, KCl, NaCl, ATP/Mg or alteration of buffer pH. D-Glucose efflux from lysosomes was temperature-dependent, with a Q10 of 2.3, and was inhibited by cytochalasin B. Counter-transport could not be demonstrated. In contrast, L-fucose uptake had a Km of 65 mM and was largely unaffected by 5 M excess of neutral D-sugars. Both uptake and efflux of L-fucose were inhibited by cytochalasin B. It appears that lysosomes possess a facilitated transport system for D-glucose and perhaps other neutral D-sugars that is discrete from transport systems for acetylated and acidic sugars.

Full text

PDF
323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baccino F. M., Zuretti M. F. Structural equivalents of latency for lysosome hydrolases. Biochem J. 1975 Jan;146(1):97–108. doi: 10.1042/bj1460097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bame K. J., Rome L. H. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism. J Biol Chem. 1985 Sep 15;260(20):11293–11299. [PubMed] [Google Scholar]
  3. Bird S. J., Forster S., Lloyd J. B. Translocation of sugars into rat liver lysosomes. Evidence against a common carrier for D-glucose and D-ribose. Biochem J. 1987 Aug 1;245(3):929–931. doi: 10.1042/bj2450929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen S. R., Lo T. C. Cytochalasin B as a probe for the two hexose-transport systems in rat L6 myoblasts. Biochem J. 1988 Apr 1;251(1):63–72. doi: 10.1042/bj2510063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Docherty K., Brenchley G. V., Hales C. N. Evidence for facilitated diffusion of sugars in rat liver lysosomes [proceedings]. Biochem Soc Trans. 1979 Apr;7(2):364–365. doi: 10.1042/bst0070364. [DOI] [PubMed] [Google Scholar]
  6. Docherty K., Brenchley G. V., Hales C. N. The permeability of rat liver lysosomes to sugars. Evidence for carrier-mediated facilitated diffusion. Biochem J. 1979 Feb 15;178(2):361–366. doi: 10.1042/bj1780361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Docherty K., Hales C. N. The effects of ions and pH on the transport of sugars into rat liver lysosomes. FEBS Lett. 1979 Oct 1;106(1):145–148. doi: 10.1016/0014-5793(79)80714-0. [DOI] [PubMed] [Google Scholar]
  8. Forster S., Iveson G. P., Bird S. J., Lloyd J. B. Translocation of sugars across the lysosome membrane. Biochem Soc Trans. 1989 Jun;17(3):441–441. doi: 10.1042/bst0170441. [DOI] [PubMed] [Google Scholar]
  9. Hales C. N., Docherty K., Maguire G. A. Sugar transport in lysosomes? Biochem Soc Trans. 1982 Feb;10(1):14–15. doi: 10.1042/bst0100014. [DOI] [PubMed] [Google Scholar]
  10. Jonas A. J. Cystine transport in purified rat liver lysosomes. Biochem J. 1986 Jun 15;236(3):671–677. doi: 10.1042/bj2360671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jonas A. J., Jobe H. N-acetyl-D-glucosamine countertransport in lysosomal membrane vesicles. Biochem J. 1990 May 15;268(1):41–45. doi: 10.1042/bj2680041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jonas A. J., Speller R. J., Conrad P. B., Dubinsky W. P. Transport of N-acetyl-D-glucosamine and N-acetyl-D-galactosamine by rat liver lysosomes. J Biol Chem. 1989 Mar 25;264(9):4953–4956. [PubMed] [Google Scholar]
  13. Jonas A. J. Studies of lysosomal sialic acid metabolism: retention of sialic acid by Salla disease lysosomes. Biochem Biophys Res Commun. 1986 May 29;137(1):175–181. doi: 10.1016/0006-291x(86)91192-7. [DOI] [PubMed] [Google Scholar]
  14. Maguire G. A., Docherty K., Hales C. N. Sugar transport in rat liver lysosomes. Direct demonstration by using labelled sugars. Biochem J. 1983 Apr 15;212(1):211–218. doi: 10.1042/bj2120211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maguire G. A., Kay J. D., Hales C. N. Lysosomal sugar transport: facilitated or free diffusion? Biochem J. 1988 Jun 1;252(2):621–623. doi: 10.1042/bj2520621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mancini G. M., de Jonge H. R., Galjaard H., Verheijen F. W. Characterization of a proton-driven carrier for sialic acid in the lysosomal membrane. Evidence for a group-specific transport system for acidic monosaccharides. J Biol Chem. 1989 Sep 15;264(26):15247–15254. [PubMed] [Google Scholar]
  17. Renlund M., Tietze F., Gahl W. A. Defective sialic acid egress from isolated fibroblast lysosomes of patients with Salla disease. Science. 1986 May 9;232(4751):759–762. doi: 10.1126/science.3961501. [DOI] [PubMed] [Google Scholar]
  18. Rome L. H., Hill D. F. Lysosomal degradation of glycoproteins and glycosaminoglycans. Efflux and recycling of sulphate and N-acetylhexosamines. Biochem J. 1986 May 1;235(3):707–713. doi: 10.1042/bj2350707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schneider D. L. ATP-dependent acidification of intact and disrupted lysosomes. Evidence for an ATP-driven proton pump. J Biol Chem. 1981 Apr 25;256(8):3858–3864. [PubMed] [Google Scholar]
  20. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  21. Tietze F., Seppala R., Renlund M., Hopwood J. J., Harper G. S., Thomas G. H., Gahl W. A. Defective lysosomal egress of free sialic acid (N-acetylneuraminic acid) in fibroblasts of patients with infantile free sialic acid storage disease. J Biol Chem. 1989 Sep 15;264(26):15316–15322. [PubMed] [Google Scholar]
  22. WOLFROM M. L., PATIN D. L., DELEDERKREMER R. M. THIN-LAYER CHROMATOGRAPHY ON MICROCRYSTALLINE CELLULOSE. J Chromatogr. 1965 Mar;17:488–494. doi: 10.1016/s0021-9673(00)99899-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES