Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Dec 1;272(2):339–342. doi: 10.1042/bj2720339

Detection of inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase by thioinosinic acid and azathioprine by a new colorimetric assay.

T Ha 1, S L Morgan 1, W H Vaughn 1, I Eto 1, J E Baggott 1
PMCID: PMC1149705  PMID: 2268263

Abstract

The colorimetric assay for 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase (phosphoribosylamino-imidazolecarboxamide formyltransferase; EC 2.1.2.3) has been extensively modified. The modified assay is based upon the short-term permanganate oxidation of the folate product, tetrahydrofolate (H4folate) to p-aminobenzoyl glutamate (pABG). The modified assay was used to detect the transformylase activity in crude extracts of peripheral-blood mononuclear cells (PBMCs). Azathioprine and its metabolite, thioinosinic acid (tIMP), are competitive inhibitors (with respect to AICAR) of the chicken liver transformylase and the transformylase from PBMCs of the MRL/lpr mouse, an animal model of systemic autoimmune disease. The Ki values of tIMP and azathioprine for the chicken liver enzyme are 39 +/- 4 microM and 120 +/- 10 microM, whereas the Ki values for the enzyme from PBMCs of the MRL/lpr mouse are 110 +/- 20 microM and 90 +/- 14 microM respectively. The anti-inflammatory drugs ibuprofen and naproxen are also inhibitors of the transformylase.

Full text

PDF
339

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. R., Morton R. K., Murray A. W. Inhibition of adenylosuccinate synthetase and adenylosuccinate lyase from Ehrlich ascites-tumour cells by 6-thioinosine 5'-phosphate. Biochem J. 1964 Aug;92(2):398–404. doi: 10.1042/bj0920398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baggott J. E., Krumdieck C. L. Folylpoly-gamma-glutamates as cosubstrates of 10-formyltetrahydrofolate:5'-phosphoribosyl-5-amino-4-imidazolecarboxamide formyltransferase. Biochemistry. 1979 Mar 20;18(6):1036–1041. doi: 10.1021/bi00573a016. [DOI] [PubMed] [Google Scholar]
  3. Baggott J. E., Vaughn W. H., Hudson B. B. Inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase, adenosine deaminase and 5'-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ribotide. Biochem J. 1986 May 15;236(1):193–200. doi: 10.1042/bj2360193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baum C. L., Selhub J., Rosenberg I. H. Antifolate actions of sulfasalazine on intact lymphocytes. J Lab Clin Med. 1981 Jun;97(6):779–784. [PubMed] [Google Scholar]
  5. Bökkerink J. P., Bakker M. A., Hulscher T. W., De Abreu R. R., Schretlen E. D., van Laarhoven J. P., De Bruyn C. H. Sequence-, time- and dose-dependent synergism of methotrexate and 6-mercaptopurine in malignant human T-lymphoblasts. Biochem Pharmacol. 1986 Oct 15;35(20):3549–3555. doi: 10.1016/0006-2952(86)90625-8. [DOI] [PubMed] [Google Scholar]
  6. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  7. Deacon R., Perry J., Lumb M., Chanarin I. Effect of cobalamin inactivation on folate-dependent transformylases involved in purine synthesis in rats. Biochem J. 1985 Apr 1;227(1):67–71. doi: 10.1042/bj2270067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eto I., Krumdieck C. L. Determination of three different pools of reduced one-carbon-substituted folates. 1. A study of the fundamental chemical reactions. Anal Biochem. 1980 Nov 15;109(1):167–184. doi: 10.1016/0003-2697(80)90026-3. [DOI] [PubMed] [Google Scholar]
  9. FLAKS J. G., ERWIN M. J., BUCHANAN J. M. Biosynthesis of the purines. XVIII. 5-Amino-1-ribosyl-4-imidazolecarboxamide 5'-phosphate transformylase and inosinicase. J Biol Chem. 1957 Dec;229(2):603–612. [PubMed] [Google Scholar]
  10. Halsted C. H. Intestinal absorption and malabsorption of folates. Annu Rev Med. 1980;31:79–87. doi: 10.1146/annurev.me.31.020180.000455. [DOI] [PubMed] [Google Scholar]
  11. KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
  12. Maruyama T., Shiota T., Krumdieck C. L. The oxidative cleavage of folates. A critical study. Anal Biochem. 1978 Jan;84(1):277–295. doi: 10.1016/0003-2697(78)90511-0. [DOI] [PubMed] [Google Scholar]
  13. McCairns E., Fahey D., Sauer D., Rowe P. B. De novo purine synthesis in human lymphocytes. Partial co-purification of the enzymes and some properties of the pathway. J Biol Chem. 1983 Feb 10;258(3):1851–1856. [PubMed] [Google Scholar]
  14. Odlind B., Hartvig P., Lindström B., Lönnerholm G., Tufveson G., Grefberg N. Serum azathioprine and 6-mercaptopurine levels and immunosuppressive activity after azathioprine in uremic patients. Int J Immunopharmacol. 1986;8(1):1–11. doi: 10.1016/0192-0561(86)90067-6. [DOI] [PubMed] [Google Scholar]
  15. Pullar T., Hunter J. A., Capell H. A. Sulphasalazine in the treatment of rheumatoid arthritis: relationship of dose and serum levels to efficacy. Br J Rheumatol. 1985 Aug;24(3):269–276. doi: 10.1093/rheumatology/24.3.269. [DOI] [PubMed] [Google Scholar]
  16. Rowe P. B., McCairns E., Madsen G., Sauer D., Elliott H. De novo purine synthesis in avian liver. Co-purification of the enzymes and properties of the pathway. J Biol Chem. 1978 Nov 10;253(21):7711–7721. [PubMed] [Google Scholar]
  17. Sabina R. L., Kernstine K. H., Boyd R. L., Holmes E. W., Swain J. L. Metabolism of 5-amino-4-imidazolecarboxamide riboside in cardiac and skeletal muscle. Effects on purine nucleotide synthesis. J Biol Chem. 1982 Sep 10;257(17):10178–10183. [PubMed] [Google Scholar]
  18. Selhub J., Dhar G. J., Rosenberg I. H. Inhibition of folate enzymes by sulfasalazine. J Clin Invest. 1978 Jan;61(1):221–224. doi: 10.1172/JCI108921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Theofilopoulos A. N., Dixon F. J. Etiopathogenesis of murine SLE. Immunol Rev. 1981;55:179–216. doi: 10.1111/j.1600-065x.1981.tb00343.x. [DOI] [PubMed] [Google Scholar]
  20. Waley S. G. An easy method for the determination of initial rates. Biochem J. 1981 Mar 1;193(3):1009–1012. doi: 10.1042/bj1931009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weinblatt M. E., Coblyn J. S., Fox D. A., Fraser P. A., Holdsworth D. E., Glass D. N., Trentham D. E. Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med. 1985 Mar 28;312(13):818–822. doi: 10.1056/NEJM198503283121303. [DOI] [PubMed] [Google Scholar]
  22. Whalen C. E., Tamary H., Greenberg M., Zipursky A., Soldin S. J. Analysis of 6-mercaptopurine in serum or plasma using high performance liquid chromatography. Ther Drug Monit. 1985;7(3):315–320. doi: 10.1097/00007691-198507030-00015. [DOI] [PubMed] [Google Scholar]
  23. Woodward D. O. Adenylosuccinate AMP-lyase (Neurospora crassa). Methods Enzymol. 1978;51:202–207. doi: 10.1016/s0076-6879(78)51028-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES