Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Dec 1;272(2):453–458. doi: 10.1042/bj2720453

A novel 100 kDa protein, localized to receptor-enriched endosomes, is immunologically related to the signal-transducing guanine-nucleotide-binding proteins Gt and Gi.

L M Traub 1, W H Evans 1, R Sagi-Eisenberg 1
PMCID: PMC1149720  PMID: 2125207

Abstract

Antisera raised against the C-terminus decapeptide of the alpha-subunit of the retinal guanine-nucleotide-binding protein (G-protein) transducing (Gt) cross-reacted with the alpha-subunit of the inhibitory G-protein Gi. The same antisera also reacted with a 100 kDa protein (p100) found in rat liver homogenates. The immunoreactivity of both Gt and p100 was specifically inhibited by the immunizing peptide with similar dose-dependencies [concn. causing 50% inhibition (IC50) = 300 ng/ml]. This similarity in inhibition profiles implies that p100 contains within its structure the C-terminal sequence shared by both alpha t and alpha i. Tissue distribution studies demonstrated that p100 was particularly enriched in the liver and kidney, but was also present in other rat tissues, as well as in a number of cell lines tested. In the liver, p100 was found in both the soluble and membrane fractions. The membrane-associated form of p100 was specifically localized to an endosomal fraction (termed D-R), previously shown to be a ligand-free but receptor-enriched subfraction of liver endosomal vesicles. Two-dimensional gel electrophoresis revealed that both the cytosolic and membrane-bound forms of p100 occurred as a series of 100 kDa polypeptides with considerable charge heterogeneity (pI 6-7). Because the C-terminus domains of both alpha t and alpha i facilitate their association with their respective receptors, this region has been functionally assigned as the receptor binding site. Therefore the presence of an immunologically similar region within p100, together with its localization to the receptor-rich endocytic vesicles, suggests that p100 may be a receptor binding protein involved in receptor trafficking.

Full text

PDF
453

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali N., Milligan G., Evans W. H. Distribution of G-proteins in rat liver plasma-membrane domains and endocytic pathways. Biochem J. 1989 Aug 1;261(3):905–912. doi: 10.1042/bj2610905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Backlund P. S., Jr, Aksamit R. R., Unson C. G., Goldsmith P., Spiegel A. M., Milligan G. Immunochemical and electrophoretic characterization of the major pertussis toxin substrate of the RAW264 macrophage cell line. Biochemistry. 1988 Mar 22;27(6):2040–2046. doi: 10.1021/bi00406a034. [DOI] [PubMed] [Google Scholar]
  3. Belcher J. D., Hamilton R. L., Brady S. E., Hornick C. A., Jaeckle S., Schneider W. J., Havel R. J. Isolation and characterization of three endosomal fractions from the liver of estradiol-treated rats. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6785–6789. doi: 10.1073/pnas.84.19.6785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Burke B., Griffiths G., Reggio H., Louvard D., Warren G. A monoclonal antibody against a 135-K Golgi membrane protein. EMBO J. 1982;1(12):1621–1628. doi: 10.1002/j.1460-2075.1982.tb01364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cerione R. A., Kroll S., Rajaram R., Unson C., Goldsmith P., Spiegel A. M. An antibody directed against the carboxyl-terminal decapeptide of the alpha subunit of the retinal GTP-binding protein, transducin. Effects on transducin function. J Biol Chem. 1988 Jul 5;263(19):9345–9352. [PubMed] [Google Scholar]
  7. Deretic D., Hamm H. E. Topographic analysis of antigenic determinants recognized by monoclonal antibodies to the photoreceptor guanyl nucleotide-binding protein, transducin. J Biol Chem. 1987 Aug 5;262(22):10839–10847. [PubMed] [Google Scholar]
  8. Duncan R., Hershey J. W. Evaluation of isoelectric focusing running conditions during two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis: variation of gel patterns with changing conditions and optimized isoelectric focusing conditions. Anal Biochem. 1984 Apr;138(1):144–155. doi: 10.1016/0003-2697(84)90783-8. [DOI] [PubMed] [Google Scholar]
  9. Enrich C., Bachs O., Evans W. H. A 115 kDa calmodulin-binding protein is located in rat liver endosome fractions. Biochem J. 1988 Nov 1;255(3):999–1005. doi: 10.1042/bj2550999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans W. H., Flint N. Subfractionation of hepatic endosomes in Nycodenz gradients and by free-flow electrophoresis. Separation of ligand-transporting and receptor-enriched membranes. Biochem J. 1985 Nov 15;232(1):25–32. doi: 10.1042/bj2320025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gershoni J. M. Protein blotting: a manual. Methods Biochem Anal. 1988;33:1–58. doi: 10.1002/9780470110546.ch1. [DOI] [PubMed] [Google Scholar]
  12. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  13. Goldsmith P., Gierschik P., Milligan G., Unson C. G., Vinitsky R., Malech H. L., Spiegel A. M. Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophil and brain. J Biol Chem. 1987 Oct 25;262(30):14683–14688. [PubMed] [Google Scholar]
  14. Goldsmith P., Rossiter K., Carter A., Simonds W., Unson C. G., Vinitsky R., Spiegel A. M. Identification of the GTP-binding protein encoded by Gi3 complementary DNA. J Biol Chem. 1988 May 15;263(14):6476–6479. [PubMed] [Google Scholar]
  15. Hamm H. E., Deretic D., Arendt A., Hargrave P. A., Koenig B., Hofmann K. P. Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science. 1988 Aug 12;241(4867):832–835. doi: 10.1126/science.3136547. [DOI] [PubMed] [Google Scholar]
  16. Hamm H. E., Deretic D., Hofmann K. P., Schleicher A., Kohl B. Mechanism of action of monoclonal antibodies that block the light activation of the guanyl nucleotide-binding protein, transducin. J Biol Chem. 1987 Aug 5;262(22):10831–10838. [PubMed] [Google Scholar]
  17. Hamm H. E., Deretic D., Mazzoni M. R., Moore C. A., Takahashi J. S., Rasenick M. M. A monoclonal antibody against the rod outer segment guanyl nucleotide-binding protein, transducin, blocks the stimulatory and inhibitory G proteins of adenylate cyclase. J Biol Chem. 1989 Jul 5;264(19):11475–11482. [PubMed] [Google Scholar]
  18. Jones D. T., Reed R. R. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem. 1987 Oct 15;262(29):14241–14249. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Masters S. B., Stroud R. M., Bourne H. R. Family of G protein alpha chains: amphipathic analysis and predicted structure of functional domains. Protein Eng. 1986 Oct-Nov;1(1):47–54. [PubMed] [Google Scholar]
  21. McKenzie F. R., Kelly E. C., Unson C. G., Spiegel A. M., Milligan G. Antibodies which recognize the C-terminus of the inhibitory guanine-nucleotide-binding protein (Gi) demonstrate that opioid peptides and foetal-calf serum stimulate the high-affinity GTPase activity of two separate pertussis-toxin substrates. Biochem J. 1988 Feb 1;249(3):653–659. doi: 10.1042/bj2490653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Milligan G. Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J. 1988 Oct 1;255(1):1–13. doi: 10.1042/bj2550001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mueller S. C., Hubbard A. L. Receptor-mediated endocytosis of asialoglycoproteins by rat hepatocytes: receptor-positive and receptor-negative endosomes. J Cell Biol. 1986 Mar;102(3):932–942. doi: 10.1083/jcb.102.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  25. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  26. Palm D., Münch G., Malek D., Dees C., Hekman M. Identification of a Gs-protein coupling domain to the beta-adrenoceptor using site-specific synthetic peptides. Carboxyl terminus of Gs alpha is involved in coupling to beta-adrenoceptors. FEBS Lett. 1990 Feb 26;261(2):294–298. doi: 10.1016/0014-5793(90)80575-4. [DOI] [PubMed] [Google Scholar]
  27. Sagi-Eisenberg R., Pecht I. Protein kinase C, a coupling element between stimulus and secretion of basophils. Immunol Lett. 1984;8(5):237–241. doi: 10.1016/0165-2478(84)90002-6. [DOI] [PubMed] [Google Scholar]
  28. Simonds W. F., Goldsmith P. K., Codina J., Unson C. G., Spiegel A. M. Gi2 mediates alpha 2-adrenergic inhibition of adenylyl cyclase in platelet membranes: in situ identification with G alpha C-terminal antibodies. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7809–7813. doi: 10.1073/pnas.86.20.7809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Simonds W. F., Goldsmith P. K., Woodard C. J., Unson C. G., Spiegel A. M. Receptor and effector interactions of Gs. Functional studies with antibodies to the alpha s carboxyl-terminal decapeptide. FEBS Lett. 1989 Jun 5;249(2):189–194. doi: 10.1016/0014-5793(89)80622-2. [DOI] [PubMed] [Google Scholar]
  30. Van Dop C., Yamanaka G., Steinberg F., Sekura R. D., Manclark C. R., Stryer L., Bourne H. R. ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J Biol Chem. 1984 Jan 10;259(1):23–26. [PubMed] [Google Scholar]
  31. Wilden U., Hall S. W., Kühn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174–1178. doi: 10.1073/pnas.83.5.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson J. M., Whitney J. A., Neutra M. R. Identification of an endosomal antigen specific to absorptive cells of suckling rat ileum. J Cell Biol. 1987 Aug;105(2):691–703. doi: 10.1083/jcb.105.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wistow G. J., Katial A., Craft C., Shinohara T. Sequence analysis of bovine retinal S-antigen. Relationships with alpha-transducin and G-proteins. FEBS Lett. 1986 Feb 3;196(1):23–28. doi: 10.1016/0014-5793(86)80207-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES