Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Dec 15;272(3):589–595. doi: 10.1042/bj2720589

Lysocardiolipin formation and reacylation in isolated rat liver mitochondria.

M Schlame 1, B Rüstow 1
PMCID: PMC1149749  PMID: 2268287

Abstract

Liver mitochondrial cardiolipin (CL) is distinguished from other phospholipids by the presence of linoleoyl in almost all molecular species, and the biosynthesis of these species is not yet understood. The present study was carried out in order to test the hypothesis that the linoleoyl proportion of CL may be specifically enriched by a deacylation-reacylation cycle. Incorporation of [14C]glycerol 3-phosphate into the metabolites of the CL pathway was accompanied by formation of 14C-labelled monolyso- and dilyso-CL. Labelling of dilyso-CL was increased or decreased by stimulation or inhibition respectively of mitochondrial phospholipase A2. These data suggest a rapid deacylation of newly formed [14C]CL by phospholipase A2, whereas endogenous mitochondrial CL was very resistant to hydrolytic degradation. Unlike dilyso-CL, monolyso-CL could be reacylated by [14C]linoleoyl residues. [14C]Linoleoyl incorporation into CL was also observed when exogenous CL was added instead of monolyso-CL, thus indicating the concerted action of de- and re-acylation. Although 1-palmitoyl-2-[14C]linoleoyl-phosphatidylcholine was a suitable acyl donor under experimental conditions, the reaction was not a transacylation but required splitting of [14C]linoleic acid from phosphatidylcholine and formation of [14C]linoleoyl-CoA as an intermediate. The [14C]linoleoyl was mainly bound to the sn-2(2") position of CL, and a small portion (about 20%) to the sn-1(1") position. It is concluded that a cycle, comprising CL deacylation and monolyso-CL reacylation by linoleoyl-CoA, provides a potential mechanism for the remodelling of molecular species of newly formed CL.

Full text

PDF
589

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur G., Page L. L., Zaborniak C. L., Choy P. C. The acylation of lysophosphoradylglycerocholines in guinea-pig heart mitochondria. Biochem J. 1987 Feb 15;242(1):171–175. doi: 10.1042/bj2420171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Baba A., Onoe H., Ohta A., Iwata H. Assay of phospholipase A2 activity of synaptic membranes using a phospholipid transfer protein: stimulation by depolarization. Biochim Biophys Acta. 1986 Aug 14;878(1):25–31. [PubMed] [Google Scholar]
  4. Beyer K., Klingenberg M. ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry. 1985 Jul 16;24(15):3821–3826. doi: 10.1021/bi00336a001. [DOI] [PubMed] [Google Scholar]
  5. Bligny R., Douce R. A precise localization of cardiolipin in plant cells. Biochim Biophys Acta. 1980 Feb 22;617(2):254–263. doi: 10.1016/0005-2760(80)90168-x. [DOI] [PubMed] [Google Scholar]
  6. Cable M. B., Powell G. L. Spin-labeled cardiolipin: preferential segregation in the boundary layer of cytochrome c oxidase. Biochemistry. 1980 Dec 9;19(25):5679–5686. doi: 10.1021/bi00566a003. [DOI] [PubMed] [Google Scholar]
  7. Dale M. P., Robinson N. C. Synthesis of cardiolipin derivatives with protection of the free hydroxyl: its application to the study of cardiolipin stimulation of cytochrome c oxidase. Biochemistry. 1988 Oct 18;27(21):8270–8275. doi: 10.1021/bi00421a042. [DOI] [PubMed] [Google Scholar]
  8. Daum G. Lipids of mitochondria. Biochim Biophys Acta. 1985 Jun 12;822(1):1–42. doi: 10.1016/0304-4157(85)90002-4. [DOI] [PubMed] [Google Scholar]
  9. De Winter J. M., Vianen G. M., Van den Bosch H. Purification of rat liver mitochondrial phospholipase A2. Biochim Biophys Acta. 1982 Aug 18;712(2):332–341. doi: 10.1016/0005-2760(82)90351-4. [DOI] [PubMed] [Google Scholar]
  10. Drees M., Beyer K. Interaction of phospholipids with the detergent-solubilized ADP/ATP carrier protein as studied by spin-label electron spin resonance. Biochemistry. 1988 Nov 15;27(23):8584–8591. doi: 10.1021/bi00423a012. [DOI] [PubMed] [Google Scholar]
  11. Edman K., Ericson I. Phospholipid and fatty acid composition in mitochondria from spinach (Spinacia oleracea) leaves and petioles. A comparative study. Biochem J. 1987 Apr 15;243(2):575–578. doi: 10.1042/bj2430575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eichberg J. The reacylation of deacylated derivatives of diphosphatidylglycerol by microsomes and mitochondria from rat liver. J Biol Chem. 1974 Jun 10;249(11):3423–3429. [PubMed] [Google Scholar]
  13. Hallermayer G., Neupert W. Lipid composition of mitochondrial outer and inner membranes of Neurospora crassa. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):279–288. doi: 10.1515/bchm2.1974.355.1.279. [DOI] [PubMed] [Google Scholar]
  14. Hostetler K. Y., Galesloot J. M., Boer P., Van Den Bosch H. Further studies on the formation of cardiolipin and phosphatidylglycerol in rat liver mitochondria. Effect of divalent cations and the fatty acid composition of CDP-diglyceride. Biochim Biophys Acta. 1975 Mar 24;380(3):382–389. doi: 10.1016/0005-2760(75)90106-x. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lenting H. B., Neys F. W., van den Bosch H. Regulatory aspects of mitochondrial phospholipase A2 from rat liver: effects of proteins, phospholipids and calcium ions. Biochim Biophys Acta. 1988 Jul 1;961(1):129–138. doi: 10.1016/0005-2760(88)90138-5. [DOI] [PubMed] [Google Scholar]
  17. McMurray W. C., Jarvis E. C. Partial purification of diphosphatidylglycerol synthetase from liver mitochondrial membranes. Can J Biochem. 1980 Oct;58(10):771–776. doi: 10.1139/o80-108. [DOI] [PubMed] [Google Scholar]
  18. Powell G. L., Knowles P. F., Marsh D. Spin-label studies on the specificity of interaction of cardiolipin with beef heart cytochrome oxidase. Biochemistry. 1987 Dec 15;26(25):8138–8145. doi: 10.1021/bi00399a018. [DOI] [PubMed] [Google Scholar]
  19. Reers M., Pfeiffer D. R. Inhibition of mitochondrial phospholipase A2 by mono- and dilysocardiolipin. Biochemistry. 1987 Dec 15;26(25):8038–8041. doi: 10.1021/bi00399a002. [DOI] [PubMed] [Google Scholar]
  20. Rüstow B., Schlame M., Rabe H., Reichmann G., Kunze D. Species pattern of phosphatidic acid, diacylglycerol, CDP-diacylglycerol and phosphatidylglycerol synthesized de novo in rat liver mitochondria. Biochim Biophys Acta. 1989 Apr 3;1002(2):261–263. doi: 10.1016/0005-2760(89)90296-8. [DOI] [PubMed] [Google Scholar]
  21. Schlame M., Horvàth L., Vìgh L. Relationship between lipid saturation and lipid-protein interaction in liver mitochondria modified by catalytic hydrogenation with reference to cardiolipin molecular species. Biochem J. 1990 Jan 1;265(1):79–85. doi: 10.1042/bj2650079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schlame M., Rabe H., Rüstow B., Kunze D. Molecular species of mitochondrial phosphatidylcholine in rat liver and lung. Biochim Biophys Acta. 1988 Feb 19;958(3):493–496. doi: 10.1016/0005-2760(88)90236-6. [DOI] [PubMed] [Google Scholar]
  23. Schlame M., Rüstow B., Kunze D., Rabe H., Reichmann G. Phosphatidylglycerol of rat lung. Intracellular sites of formation de novo and acyl species pattern in mitochondria, microsomes and surfactant. Biochem J. 1986 Nov 15;240(1):247–252. doi: 10.1042/bj2400247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Steinbrecht I., Kunz W. Anwendung der "Cycling"--Technik zur stichprobenartigen quantitativen Bestimmung der Reduktionsgrades des NAD- und NADP-Systems von Rattenlebermitochondrien bei kontinuierlich registrierenden Messungen. Acta Biol Med Ger. 1970;25(5):731–747. [PubMed] [Google Scholar]
  25. Wood R., Harlow R. D. Structural analyses of rat liver phosphoglycerides. Arch Biochem Biophys. 1969 Dec;135(1):272–281. doi: 10.1016/0003-9861(69)90540-2. [DOI] [PubMed] [Google Scholar]
  26. de Winter J. M., Lenting H. B., Neys F. W., van den Bosch H. Hydrolysis of membrane-associated phosphoglycerides by mitochondrial phospholipase A2. Biochim Biophys Acta. 1987 Jan 13;917(1):169–177. doi: 10.1016/0005-2760(87)90297-9. [DOI] [PubMed] [Google Scholar]
  27. van den Bosch H. Intracellular phospholipases A. Biochim Biophys Acta. 1980 Sep 30;604(2):191–246. doi: 10.1016/0005-2736(80)90574-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES